Script generated by TTT

Title: Petter: Compiler Construction (20.04.2020)
Date: Mon Apr 20 16:07:36 CEST 2020
Duration: 28:14 min

Pages: 7

Organizing

@ Master or Bachelor in the 6th Semester with 5 ECTS
@ Prerequisites

@ Basic Programming:
e |Introduction to Theory of Computation

@ Basic Principles: Operating Systems and System Software

o|Labcourse Compiler Construction
Materials:
@ TTT-based lecture recordings
@ The slides
@ Related literature list online (= wilhelm/Seidl/Hack Compiler Design)
@ Tools for visualization of abstract machines (VAM)
@ Tools for generating components of Compilers (JFlex/CUP)

2/10

2Ty TECHNISCHE UNIVERSITAT MUNCHEN
g%gi FAKULTAT FUR INFORMATIK

Compiler Construction |

Dr. Michael Petter

SoSe 2020

Flipped Classroom

... is a concept to focus more on students learning process — and fits quite well into plague time.

Content delivery:

@ |Mandatory recordings:
http://ttt.in.tum.de/lectures/index_ws.php?year=20&s=true#COMP
O| Presented as lessons]

@ To be|prepared single-handedly within a week
@ Starting Apr 23rd

‘ Virtual Classroom: |

Thursdaye{ 14:00-16:00 }via|bbb.in.tum.de|, starting Thu, Apr 23rd

@ Discussion

@ AMA (Ask me [almost] Anything)
@ Content Practice

@ Further Insights

1/10

3/10

Flipped Classroom

Tutorial:

|Monday 14:15-15:45 L/ia eithel{ bbb.in.tum.de or tum—conf.zoom.us|(wil| be announced on

Exercise sheet released each week to be solved at home
In the tutorial: Discussion of the solution and your questions
Recording of tutorial will also be published

First session: May 4th

For questions about the tutorial, email|Michael Schwarz at }'n.schwarz@tum.de ”

All information about the tutorial and exercise sheets:
https://www.moodle.tum.de/course/view.php?id=53342

Exam:

One Exam in the summer, none in the winter
The date will be announced by the central examination committee

Interp

retation vs. Compilation

Interpretation

No precomputation on program text necessary
= | no/small startup-overhead

More |context information|a||ows for specific| aggressive optimization |

4/10

Compilation

Program components are analyzed once, during preprocessing, instead of multiple
times during execution
smaller runtime-overhead

Runtime complexity of optimizations less important than in interpreter

7/10

Compiler

il

General Compiler setup:

Program code

]

Topic:

Overview

Compiler

—
| | |
ANalysis ®) |
O
=R = Il:a:qu _Eg-
Synthesis ® |
Code

5/10

8/10

