Lexical Analysis

Script generated by TTT

Title: Petter: Compiler Construction (23.04.2020)

- 02: Regular Expressions

Date: Tue Apr 21 15:09:35 CEST 2020

Duration: 20:10 min

Pages: 4

Chapter 1: Basics: Regular Expressions

6/49

Regular Expressions

Basics

- \bullet Program code is composed from a finite alphabet $\quad \Sigma \quad$ of input characters, e.g. Unicode
- The sets of textfragments of a token class is in general regular.
- Regular languages can be specified by regular expressions.

Definition Regular Expressions

The set \mathcal{E}_{Σ} of (non-empty) regular expressions is the smallest set \mathcal{E} with:

- $\epsilon \in \mathcal{E}$ (ϵ a new symbol not from Σ);
- $a \in \mathcal{E}$ for all $a \in \Sigma$;
- \bullet $(e_1 \mid e_2), (e_1 \cdot e_2), e_1^* \in \mathcal{E}$ if $e_1, e_2 \in \mathcal{E}$.

Regular Expressions

... Example:

$$((a \cdot b^*) \cdot a)$$

$$(a \mid b)$$

$$((a \cdot b) \cdot (a \cdot b))$$

7/4

8/49

Regular Expressions

Specification needs Semantics

...Example:

Щ	Specification	Semantics	•
	abab	$\{abab\}$	
	$a \mid b$	$\{a,b\}$	
	ab^*a	$\{ab^na \mid n \geq 0\}$	

For $e \in \mathcal{E}_{\Sigma}$ we define the specified language $\llbracket e \rrbracket \subseteq \Sigma^*$ inductively by:

$$\begin{bmatrix}
e \\
 \end{bmatrix} = \{e\} \\
 \begin{bmatrix}
e \\
 \end{bmatrix} = \{a\} \\
 \begin{bmatrix}
e^* \\
 \end{bmatrix} = ([e])^* \\
 \begin{bmatrix}
e_1 \\
 \end{bmatrix} = [[e_1]] \cup [[e_2]] \\
 \begin{bmatrix}
e_1 \cdot e_2 \\
 \end{bmatrix} = [[e_1]] \cdot [[e_2]]$$

9/49