Topdown Parsing

Script generated by TTT Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Title: Petter: Compiler Construction (14.05.2020)
- 13: LL(1) Grammars

Date: Mon May 04 15:10:53 CEST 2020

Duration: 23:42 min

Pages: 9
Topdown Parsing Topdown Parsing
Problem: Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton. automaton as deterministic pushdown automaton.
I[dea 1: GLL Parsing Idea 1: GLL Parsing
For each conflict, we|create a virtual copy of the complete conﬁguration|and continue For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel. computing in parallel.
Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

32/56 32/56

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a|Iookup of the next input symbols. |

Topdown Parsing

Idea:
@ Emanate from the| item pushdown automaton
° Consider‘the next input symbol|to determine the appropriate rule for the next expansion
@ A grammar is called| LL(1)|if a unique choice is always possible

32/56

34/56

Structure of the ZL{1)-Parser:

) —{1 1]

Output

A
Y

M

@ The parser accesses a frame of length 1 of the input;|
@ it corresponds to an item pushdown automaton, essentially;

@ table M@ contains the rule of choice.

Topdown Parsing

Idea:
@ Emanate from the item pushdown automaton
@ Consider the next input symbol to determine the appropriate rule for the next expansion
@ A grammar is called LL(1) if a unique choice is always possible

g

Philip Lewis Richard Stearns

Definition:

A reduced : rammar is called| LL(1),|if for each two distinct

rules| A, Aa! € P and each derivation
S —71 ulA[B]with w € T™ the following is valid:

First1 n First1 =0

33/56

34/56

Topdown Parsing

Example 1:

o
~—

S —1if (E)[S|else 51|
2 while (£)[S] |

B
E — sid L

is LL(1), since

First1 (E) = {id}

35/56

Topdown Parsing

Example 1:

Example 2:

S — if(E)SelseS |
while (E) S |
E;

E — id

is LL(1),\since First; (E) = {id}

\/ ¥
B3l

S — if(FE)SesesS | 1
if(E£)S | T
while (E) S |

) v

...isnot LL(k) for any k£ > 0.

35/56

