Script generated by TTT

Title:

Date:

Duration:

Pages:

Petter: Compiler Construction (25.06.2020)
- 42: Introduction to Declaration Use
Analysis

Thu Jun 25 10:02:25 CEST 2020
05:21 min

7

Symbol Bindings and Visibility

Consider the following Java code:

void foo () {

int a;f

@ each declaration of a variable v causes memory
allocation for v

while (true)
double a;
Ii = 0.5;
write 7
break;

}

{

@ using v requires knowledge about its memory
location
— determine the declaration v is bound to

@ a binding is not visible when a local declaration of

a=Z;
bar () ;
write (a¥7]|

the same name is in scope

in the example the declaration of a is shadowed by
the local declaration in the loop body

35/67

Scope of |dentifiers

void foo () {

int a;
while (true) {

double a;
a = 0.5;
write (a);
break;

}

a = 2;
bar () ;
write(a);

Chapter 2:
Decl-Use Analysis

scope of int a

34/67

36/67




Scope of Identifiers Scope of Identifiers

void foo () { void foo () {
int a; int a;
while (true) { while (true) {
double a; double a;
a = 0.5; a = 0.5;
write (a); scope of double a write (a); scope of double a
break; break;
} }
a = 2; a = 2;
bar () ; bar () ;
write(a); write(a);
} }
/\ administration of identifiers can be quite complicated...
36/67 36/67
Resolving Identifiers Resolving Identifiers
Observation: each identifier in the AST must be translated into a memory access Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing
rapid access to its declaration

37/67 37/67




