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Symbol Bindings and Visibility

Consider the following Java code:

void foo () {

int a;f

@ each declaration of a variable v causes memory
allocation for v

while (true)
double a;
Ii = 0.5;
write 7
break;

}

{

@ using v requires knowledge about its memory
location
— determine the declaration v is bound to

@ a binding is not visible when a local declaration of

a=Z;
bar () ;
write (a¥7]|

the same name is in scope

in the example the declaration of a is shadowed by
the local declaration in the loop body
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Scope of |dentifiers

void foo () {

int a;
while (true) {

double a;
a = 0.5;
write (a);
break;

}

a = 2;
bar () ;
write(a);

Chapter 2:
Decl-Use Analysis

scope of int a
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Scope of Identifiers Scope of Identifiers

void foo () { void foo () {
int a; int a;
while (true) { while (true) {
double a; double a;
a = 0.5; a = 0.5;
write (a); scope of double a write (a); scope of double a
break; break;
} }
a = 2; a = 2;
bar () ; bar () ;
write(a); write(a);
} }
/\ administration of identifiers can be quite complicated...
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Resolving Identifiers Resolving Identifiers
Observation: each identifier in the AST must be translated into a memory access Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing
rapid access to its declaration
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