Script generated by TTT

Title: Petter: Compiler Construction (25.06.2020)
- 43: String Hashing

Date: Thu Jun 25 10:13:02 CEST 2020

Duration: 13:55 min

Pages: 8

Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing
rapid access to its declaration

Ideas:

@ rapid access: replace every identifier by a

— integers as keys: comparisons of integers is faster

37/67

Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing

[12pid hocess to its[deciaration]

Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing
rapid access to its declaration

Ideas:

@ rapid access: replace every identifier by a unique integer
— integers as keys: comparisons of integers is faster
@ link each usage of a variable to the declaration of that variable
— for languages without explicit declarations, create declarations when a variable is first encountered

37/67

37/67

Rapid Access:| Replace Strings with Integers |

Idea for Algorithm:
Input: a sequence of strings
Output: @ sequence of numbers
@ table that allows to retrieve the string that corresponds to a number

Apply this algorithm on each identifier during scanning.

Implementation approach:

@ count the - iers infint_count]

@ maintain a hashtable S : String — int to remember numbers for known identifiers

We thus define the function:

int indexForldentifier {
if (S (w) = undefined) {
[S =5 {ww— count}y
return|count++;

} else return

38/67

Example: Replacing Strings with Integers

Input:
[Peter | Piper | picked | a [peck [of | pickled | peppers

If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |

Output:

40/67

Implementation: Hashtables for Strings
@ allocate an array V\I of sufficient size m

@ choose a hash function H :| String|— [0 m — 1]|with:

o I (w)is cheap to compute |
o| H distributes the occurring words equally over [0, m — 1] |

Possible generic choices for sequence types (Z =|(zo, . .. Tr—1))):

Ho(@) = (w0 + zr—1)lom]
Hl(a_f): (Zl Oxl'p)
= (zot+p-(z1+p- (~~+P'£E771---)))%m

for some prime number p (e.g. 31)

X The hash value offw may not be unique!|
— Append|(w, i)|to a linked list located at|M/[H (w)]
@ Finding the index for w, we compare w with all for which = H(z)
v/ access on average:
insert: O(1)
lookup: O(1)

Example: Replacing Strings with Integers

Input: © S 4 K
\ Peter \ Plper \ plcked | a \ peck | of | pickled | peppers

5
If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck [of [pickled | peppers | Peter [Piper | picked |

Output: 4« « v 7 89
[0]1]2]3 \4|5\6|7\8\0\1\2|3\4|5\6
7[9]10[4[5][6[7[0][1][2]

39/67

40/67

Example: Replacing Strings with Integers

Input:
[Peter [Piper | picked [a | peck [of | pickled | peppers

If [Peter | Piper [picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |

Output:
(0[1[2[3[4[5[6[7[8[0[1[2]3[4]5]6
7]9[10]4][5[6][7]0[1]2]
and -
Hashtable with 1 = 7 and Ho:
. ,F;ie;:: & | pickled 7T
2 | picked g ﬁeppers ; | [pickled [] [peck[4] [picked [32]
3| a 9 wheres 3 _‘ of [5] [wheres [9] [peppers [7]
4 | peck] h 4
5| of 0 | the s [Piper 1) [Pewr Jo] [5 [3]
6

40/67

