Script generated by TTT

Title: Petter: Compiler Construction (25.06.2020)
- 48: Structural Subtyping
Date: Fri Jun 26 10:18:13 CEST 2020
Duration: 31:49 min
Pages: 11
Subtyping <

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes

t1 < t2, means that the values of type 1

@ form a subset of the values of type ¢»;
@ can be converted into a value of type t;
@ fulfill the requirements of type ¢;

@ are assignable to variables of type 2.

Example:
assign smaller type (fewer values) to larger type (more values)

t1
t2 s
y=ug;
t1 < t2

60/67

Subtyping <

On the arithmetic basic types char, int, long. etc. there exists a rich subtype hierarchy

Subtypes

t1 < t2, means that the values of type ¢

@ form a subset of the values of type ¢;
@ can be converted into a value of type t2;
@ fulfill the requirements of type #2;

© are assignable to variables of type 2.

Example:
assign smaller type (fewer values) to larger type (more values)

t1 x;
b2 y;
Yy=x

Subtyping <

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes

t1 < t2, means that the values of type t1

@ form a subset of the values of type ¢;
@ can be converted into a value of type t2;
@ fulfill the requirements of type -;

@ are assignable to variables of type 2.

Example:
assign smaller type (fewer values) to larger type (more values)

int x;
double y;
y=x

int < double

60/67

60/67

Example: Subtyping

Extending the subtype relationship to more complex types, observe:

string extractInfo(struct { string info; } x) {
return x.info;

}
@ we want extract Info to be applicable to all argument structures that return a
string typed field for accessor info
@ the idea of subtyping on values is related to subclasses
@|we use deduction rules to describe when ¢, < 2 should hold. ..

Rules and Examples for Subtyping
|| B Grwsa)

l/

Examples:
struct {float g; }

——

(int)

int (float)

61/67

63/67

Rules for Well-Typedness of Subtyping

. BN

Sub
Sap

]
[s]

z‘ typedef s A

n

| struct {s1 a1; ... s, gz }

struct {t1 ay; ... &5 } ‘

B = G

ag

~

struct {intju, int v} [}
struct {Ent u}
y::mj

Rules and Examples for Subtyping

| S0 (S1,---,Sm) | to (t1,...,tm) ‘
[so]to] [ta]s] oo [tmlsul
Examples:
struct {int a; int b; } struct {float a; }
int (int) float (float)
int (float) float (int)
Definition

Given two function types in subtype relation so(s1, . ..
@ co-variance of the return type so < to and
@ contra-variance of the arguments s; > ¢; fir1 <i<n

sn) < to(ti,...tn) then we have

62/67

63/67

Rules and Examples for Subtyping

]

Examples;

Definition

[[50 Lo |
l V]|
‘s t0| |t1 sl| s |tmsm

]
struct {int a; int b;
int (int)

int (float)’

A 10

@ co-variance of the return type so < to and

Given two function types in subiype relation so(s1,. .. sn v‘}

@ contra-variance of the arguments s; > t; fir1 < i <n

\/ .(“‘]/,

Subtypes: Ap}glication of Rules (lll)
107

Check if S5 <

IStr‘mt {int |a|; |R1 (R1) |f;} |

struct {int a;

ntb; 5 (S1) fi}

[struct {intla] R, (S2)[f]} |

struct {int a;

SR <=

mt b; S (R2) f3}

| int

int |

G [] || (i E: 59]
Vv
u \Bi[Ro| | |S2lRd]

63/67

66/67

Suké%gﬁfs;f%pg!l\c/mlon of Rules (Il)

Ry struct {int a; R: (R1) f;}

Sy z struct {i
Ry = [struct |
Ss = struct {i
Sa |51
a b S
[int [int] [[8(Ra) | 51 (S1) |
v
[| |Sz Sl| |Sl RZ‘
a
| int | int ‘ | »$1 (Sl\L ’/Rz (SQ) |
| LM%

Discussion

o for presentational purposes, proof trees are often abbrevi%ggsj b)lr omitting deductions

within the tree
@ |structural sub-types|are very powerful and can be quite intricate to understand

@| Java generalizes structs to objects/classes where a sub-class A inheriting form base
class O is a subtype A < O

0| subtype relations between classes must be explicitly declared |

65/67

67/67

