#### Script generated by TTT

Title: Petter: Compiler Construction (02.07.2020)

- 53: Conditional Statements

Date: Thu Jul 02 09:48:06 CEST 2020

Duration: 20:44 min

Pages: 11

### About Statements and Expressions

General idea for translation:  $\begin{array}{cccc} \operatorname{code}^i s \ \rho & : & \text{generate code for statement } s \\ \operatorname{code}^i_{\mathrm{R}} e \ \rho & : & \text{generate code for expression } e \ \operatorname{into} \ \emph{R}_i \end{array}$ 

Throughout:  $i, i+1, \ldots$  are free (unused) registers

For an *expression* x=e with  $\rho$  x=a we defined:

$$\begin{array}{rcl} \operatorname{code}_{\mathbf{R}}^{i} \; x = e \; \rho & = & \operatorname{code}_{\mathbf{R}}^{i} \; e \; \rho \\ & & \operatorname{move} \; R_{a} \; R_{i} \end{array}$$

However x = e; is also an *expression statement*:

## Chapter 3:

#### Statements and Control Structures

18/49

#### **About Statements and Expressions**

General idea for translation:  $\begin{array}{cccc} \operatorname{code}^i s \ \rho & : & \text{generate code for statement } s \\ \operatorname{code}^i_{\mathbb{R}} e \ \rho & : & \text{generate code for expression } e \ \text{into } \textbf{\textit{R}}_i \end{array}$ 

Throughout:  $i, i + 1, \ldots$  are free (unused) registers

For an *expression* x = e with  $\rho x = a$  we defined:

$$\operatorname{code}_{\mathbf{R}}^{i} x = e \ \rho = \operatorname{code}_{\mathbf{R}}^{i} e \ \rho$$

$$\operatorname{move} R_{a} R_{i}$$

However, x = e; is also an *expression statement*:

Define:

$$\boxed{\operatorname{code}^i e_1 = e_2; \ \rho} = \boxed{\operatorname{code}^i_{\mathbb{R}} e_1 = e_2} \rho$$

The temporary register  $R_i$  is ignored here. More general:

$$\operatorname{code}^{i}[e;] \rho = \operatorname{code}_{R}^{i} e \rho$$

19/49

19/49

# About Statements and Expressions General idea for translation: $\frac{\operatorname{code}^{i} s \rho}{\operatorname{code}^{i} i}$

generate code for statement s $\operatorname{code}_{\mathsf{R}}^{i} e \rho$  : generate code for expression e into  $R_i$ 

Throughout:  $i, i + 1, \ldots$  are free (unused) registers

For an *expression* x = e with  $\rho x = a$  we defined:

$$\operatorname{code}_{\mathbf{R}}^{i} x = e \ \rho = \operatorname{code}_{\mathbf{R}}^{i} e \ \rho$$

$$\operatorname{move} R_{a} R_{i}$$

However, x = e; is also an *expression statement*:

Define:

$$\operatorname{code}^{i} e_{1} = e_{2}; \ \rho = \operatorname{code}_{R}^{i} e_{1} = e_{2} \ \rho$$

The temporary register  $R_i$  is ignored here. More general:

$$code^i e$$
;  $\rho = code^i_R e \rho$ 

• Observation: the assignment to  $e_1$  is a side effect of the evaluating the expression  $e_1 = e_2$ .

#### **Jumps**

In order to diverge from the linear sequence of execution, we need *jumps*:



#### Translation of Statement Sequences

The code for a sequence of statements is the concatenation of the instructions for each statement in that sequence:

$$\operatorname{code}^{i} \operatorname{sp} \rho = \operatorname{code}^{i} \operatorname{sp} \rho$$

$$\operatorname{code}^{i} \operatorname{sp} \rho$$

$$\operatorname{code}^{i} \operatorname{sp} \rho = \text{$m$ empty sequence of instructions}$$

Note here: s is a statement, ss is a sequence of statements

20/49

#### **Conditional Jumps**

A conditional jump branches depending on the value in  $R_i$ :



21/49

19/49

22/49

#### Simple Conditional

We first consider  $s \equiv if$  (c) ss. ...and present a translation without basic blocks.

#### Idea:

- ullet emit the code of c and ss in sequence
- insert a jump instruction in-between, so that correct control flow is ensured





#### Example for if-statement

Let  $\rho = \{x \mapsto 4, y \mapsto 7\}$  and let s be the statement

Then  $code^i s \rho$  yields:





24/49

25/49

23/49

#### Example for if-statement



25/49