Script generated by TTT

Title: Simon: Compilerbau (06.05.2013)
Date: Mon May 06 14:25:55 CEST 2013
Duration: 83:18 min

Pages: 47

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted
by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

Basics of Pushdown Automata

Chapter 2:

Example:
| States: 0,1.2
Start state: 0
Final states: 0,2

77/150

]
Ofalll
L alll
1y a5\ 2
121 6\ 2

76/150

78/150

Example:
0 11
States: 0,1,2 | Z o
Start state: 0 T3
Final : 0,2
inal states , AN

Conventions:

@ |We do not differentiate between pushdown symbols and

states

@ The rightmost / upper pushdown symbol represents the
state

@ Every transition consumes / modifies the upper part of the

pushdown

78/150

Pushdown Automata

Definition:

A pushdown automaton (PDA) is a tuple :
M = (Q, T, {5, q0, F) Wlth Friedrich Bauer Klaus Samelson

@ O afinite set of states;

@ T aninput alphabet;

@ go € QO the start state;

@ FC (Q the set of final states and

@) C Q" x(TU{e}) x 0° afinite set of transitions

We define computations of pushdown automata with the help of
transitions; a particular computation state (the current
configuration) is a pair:

(y,w) € O" xT*

consisting of the pushdown content and the remaining input.

79/150

Pushdown Automata

Definition:
A pushdown automaton (PDA) is a tuple
M= (Q,T,0,qo, F) with:

@ (0 afinite set of states;

@ T aninput alphabet;

@ g0 € O the start state;

@ FFC Q the set of final states and

@ 6 C O x(TU{e}) x 0" afinite set of transitions

.. for example:

Friedrich Bauer Klaus Samelson

States: 0,1,2 ? Z :i

Start state: 0

Final states: 0,2 l]b] 2
256 2

10

79/150

80/150

.. for example:

States: 0,1,2 | ? ‘Z i:
Start state: 0 | T3
Final states: 0,2 |

[12]p] 2

(0, aaabbb) = (11, [dabbb)

.. for example:

States: 0,1,2 ? Z : :
Start state: 0 11512
Final states: 0,2

12161 2

(0, aaabbb) + (11, aabbb)
(111, abbb)
- o(11tt, @ob)

80/150

80/150

.. for example:

States: 0,1,2 ? é :i
Start state: 0 0 @ 5
Final states: 0,2

1216 2

(0, aaabbb) F (11, aabbb)
- (111, abbb)

.. for example:

States: 0,1,2 ? Z ::
Start state: 0 TR
Final states: 0,2

126 2
(0, aaabbb) (I'l, aabbb)

o (111, abbb)

F (1111, bbb)

o (112, bb)

80/150

80/150

.. for example:

States: 0,1,2 ? Z i:
Start state: 0 11515
Final states: 0,2
1216 2
(0, aaabbb) + (11, aabbb)
- (111, abbb)
- (1111, bbb)
= (112, bb)
- (12, b)

A computation step is characterized by the relation
- C (0 xT*)* with

(y, xw) E (ar/,w) for (v,x,9") €6

Remarks:

@ The relation - depends of the pushdown automaton M
@ The reflexive and transitive closure of I is called *
@ Then, the language, accepted by M, is

LM) ={weT* |Bf € F} (go,w)="[f, €)l}

A computation step is characterized by the relation
- C (0" x TR with

(nw) = (n w) | for E

80/150

A computation step is characterized by the relation
- C (0° xT*)* with

(ay, xw) F (ay',w) for (v,x,9") € 4d

Remarks:

@ The relatipn - depends of the pushdown automaton M
@ The refiexive|and transitive closure of H is called -*
@ Then, the language, accepted by M, is

LM) ={weT*|If€F: (go,w)F"(f,€)}

We accept with a final state together with empty input.

81/150

81/150

81/150

Deterministic Pushdown Automaton

Definition:

The pushdown automaton M
configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions
(v1,x,72), (71,x,75) € ¢ we can assume:
Is v, a suffix of 4{, then x # x’ A x # ¢ # X’ is valid.

is deterministic, if every

... for example:
| 0 a]ll
[fa] 11
a1 2
[12]p] 2
Chapter 3:

Top-down Parsing

... this obviously holds

82/150

84/150

Pushdown Automata

Theorem:
For each context free grammar G = (N, T, P, S)

M. Schiitzenberger A. Ottinger

a pushdown automaton M with £(G) = L£(M) can be bullt.

The theorem is so important for us, that we take a look at two
constructions for automata, motivated by both of the special

derivations:
@ ML to build Leftmost derivations
@ ME to build reverse Rightmost derivations

Item Pushdown Automaton

Construction: Item Pushdown Automaton M,

@ Reconstruct a Leftmost derivation.
@ Expand nonterminals using a rule.

@ Verify successively, that the chosen rule matches the input.

—— The states are now ltems (= rules with a dot):

A —aep]) A—afl € P

The dot marks the spot, how far the rule is already processed

83/150

85/150

ltem Pushdown Automaton — Example Iltem Pushdown Automaton — Example

Our example: Our example:

S — AB A — a B — b S — AB A — a B — b

&) Bl

86/150 86/150

ltem Pushdown Automaton — Example ltem Pushdown Automaton — Example

Our example: Our example:

S — AB A — a B — b S — AB A — a B — b

86/150 86/150

ltem Pushdown Automaton — Example

Our example:

S — AB A — a B

ltem Pushdown Automaton — Example

Our example:

S — AB A — a B

Iltem Pushdown Automaton — Example

We add anotherrule §" — S for initialising the construction:

Start state: [S"— e 8]
End state: [S"— S o]
Transition relations:
(S e 5] ﬁ| e |[S— o S][S— e AB]
[S— o AB] l c [IS— o AB][A— o 4]
[A— ed4] a |[[A —ae]
[S— e ABJl|[A—as]|f € [[S—A e B]
[S—A e B] € ||/[S—A e B|[B— e b]
B> eb] b||[B—be]
[S—A e B|[B—be]|f ¢ [[[S—ABe|
[S"— o S|[S—ABe|fl € |[S"—Se]

86/150

ltem Pushdown Automaton — Example

We add another rule §" — § for initialising the construction:

Start state: [S"— o 5]
End state: [S"— S o]
Transition relations:

[T — o 5] c[[S— o S|[S— e AB]
'[S— e AB] €[[S— e« AB][A— o 4]
[A— ed] allA—ae]

[e AB][A —as] |[¢|[S—A » B]

[S=A e B] e [[S>A e B|[B— e b]
[B— eb] b|[B—be

[S—A eB|[B—be] |c|[S—ABe

[— e S][S—ABe] | e|[—Se

86/150

87/150

87/150

ltem Pushdown Automaton Item Pushdown Automaton

. I . Discussion:
The item pushdown automaton M has three kinds of
transitions:
@ The expansions of a computation form a leftmost derivation
@ [Unfortunately, the expansions are chosen
Expansions: ([A—aeBf],e,[A—aeBfS|[B— ev]) for nondeterministically
A—=aBj3, B—vy € P
Shifts: (A—aeafl,a,[A—aaep]) for A—aap e P @ For proving correctness of the construction, we show that
Reduces: ([A—ceBS|[B—ye]e,[A—aBej]) for for every ltem [A—caeBj] the following holds:

A—aBfA, B>y € P
([A—-aeBf]l,w) " ([A—=aBef], ¢) iff B—"w

Items of the form: | [A — a e]| are also calledcomplete
The item pushdown automaton shifts the dot once around the @ LL-Parsing is based on the item pushdown automaton and

derivation tree ... tries to make the expansions deterministic ...

88/150 89/150

ltem Pushdown Automaton Item Pushdown Automaton

The item pushdown automaton A has three kinds of The item pushdown automaton M~ has three kinds of

transitions: transitions:
Expansions: ([A +«aeBf],c,[A—~>aeBj|[B— e~]) for Expansions: ([A—>aeBf],¢c,[A—>aeBj|[B— e~]) for
A - aBj, p=v € P A— aBB, B—+~v € P
Shifts: ([A—aeaflal[A —aaeg]) for A—aaB € P Shifts: ([A—aeapl,a,[A—aaef]) for A—aafBl € P
Reduces: ([A— aeBBHE — e, [A—aBej]) for Reduces: ([A—=aeBf|[B—e],e,[A—aBej]) for

A—aBfB, B—~ € P

A—aBgj, Br__r e P

Items of the form: [A — «ae| are also called complete
The item pushdown automaton shifts the dot once around the

derivation tree ...

Items of the form: [A — «ae| are also called complete
The item pushdown automaton shifts the dot once around the

derivation tree ...

88/150 88/150

ltem Pushdown Automaton

Beispiel: S—e aSh

The transitions of the according Item Pushdown Automaton:

(0] [S"— e8] e [— oS|[S— o]

1] — e e [— oS][S— eaSh]|
21[S— eaSh| all[S—aeSh|
3|[[S—aeSh| €| [S—aeSb|[S— e
41[[S—aeSh| e|l[S—aeSb|[S— eaSh|
50[S—aeSb|[S— e e|[S—aSeb|
6|[S—aeSh|[S—aSbe]|c|[S—aSeb]
T1[S—aSeb] b|[S—aShbe|
8|S — eS|[S—] €| [— Se|
9([S— eS|[S—aShbe] |c|[S— Se]

Conflicts arise between the transitions (0, 1) and (3, 4), resp..

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of
the item pushdown automaton as deterministic pushdown
automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack
and continue computing in parallel.

90/150

91/150

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of
the item pushdown automaton as deterministic pushdown
automaton.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of
the item pushdown automaton as deterministic pushdown
automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack
and continue computing in parallel.

Idee 2: Recursive Descent & Backtracking
Depth-first search for an appropriate solution.

91/150

91/150

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of
the item pushdown automaton as deterministic pushdown
automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack
and continue computing in parallel.

Idee 2: Recursive Descent & Backtracking
Depth-first search for an appropriate solution.

Idee 3: Recursive Descent &|Lookahead
Conflicts are resolved by considering a lookup of the next input
symbol.

"91/150

Topdown Parsing

Idee:

@ Emanate from the item pushdown automaton

@ Consider the next symbol to determine the appropriate rule
for the next expansion

@ A grammar is called LL(1) if a unique choice is always
possible

93/150

Structure of the L.(1)-Parser:

l L1

M

@ The parser accesses a frame of length 1 of the input;

@ it corresponds to an|item pushdown automaton,
essentially;

@ table M[q, w| contains the rule of choice.

—{ [[]

Output

=)

i

92/150

Topdown Parsing

Idee:
@ Emanate from the item pushdown automaton
@ Consider the next symbol to determine the appropriate rule
for the next expansion
@ A grammar is called LL(1) if a unique choice is always
possible

Definition:

A reduced grammar is Ca"e(ﬁ LL(l), Philip Lewis Richard Stearns
if for each two distinctrules A —a, A— o' € P and each
derivation § —; uA 8 with u € T* the following is valid:

Firsma{)’} N FirSa’;f)’) =

93/150

Topdown Parsing

Example 1:

S —

E —

Lookahead Sets

Definition:

Lif (E) Selse s

[while (£) S |

id

For a set

LCT"

we define:

Firsti(L) = (EL}UT|3VE T : ul./EL}

Example:

is LL(1), since

abb

aabbb

|S§$§S§""|

First; (E) = {id}

94/150

95/150

Topdown Parsing

Example 1:
§ — if(E)SelseS
while (£) S
E;
E — id
is LL(1), since
Example 2:
S — if(E)Selses
f(E)S
while (E) S
E;
E — id

.. is|not LL(k) for any k > 0.

Lookahead Sets

Definition:
For aset L C T* we define:

Firsti(L) = {e|eeL}U{ueT|IveT" :

]

First;(E) = {id}

uv e L}

Example:

€

ab
aabb
aaabbb

the prefixes of length 1

94/150

95/150

Lookahead Sets Lookahead Sets

Arithmetics:
Firsti(_) is compatible with union and concatenation: For a € (N UT)* we are interested in the set:

First, () =0 First, (o) = First,({w € T* | a =" w})

Firsti(Ly U L) = Firsti(L1) U First(L2)

First;(Ly - Ly) = Firsty(First; (L) - First;(Lz))

— First;(L;) ® First, (L) |dea: Treat ¢ separately: F.
. @ Letempty(X) =trueiff X —* €.
| | — concatenation F. %) F L Fe(X) [iflempty(X1) A... A empty(X;—1)

Observation: =
Letl,.l, CTU {(} with L, # 0 # L,. Then:

L if [egLi]

Ly ©L, = { (Li\{e}) U L, otherwise

If all rules of G are productive, then all sets First;(A) are

non-empty 96/150 97/150
Lookahead Sets Lookahead Sets
For a € (NUT)* we are interested in the set:
for example...
Firsti(a) = Firsti({w e T* | o« =" w})
E — E+T T
T — TxF F
Idea: Treat ¢ separately: F. F = (E) hame int

@ Letempty(X) =trueiff X -"¢.

) with empty(E) = empty(7T) = empty(F) = false
@ Fe(Xi...Xm) =U_ Fe(X;) if empty(Xi) A... A empty(X;_1)

We characterize the ¢-free First;-sets with an inequality system:

Fe(a {a} if aeT

) _
F.(A) Q if A—X,...X, €P,
empty(X1) A... A empty(Xj_1)

97/150 98/150

