Script generated by TTT

Title: Simon: Compilerbau (06.05.2013)

Date: Mon May 06 14:25:55 CEST 2013

Duration: 83:18 min

Pages: 47

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

Syntactic Analysis

Chapter 2: Basics of Pushdown Automata

76 / 150

Example:

 States:
 0,1,2

 Start state:
 0

 Final states:
 0,2

77/150

Example:

States: 0.1.2 Start state: Final states: 0,2

0	а	11
1	a	11
11	b	2
12	b	2

Conventions:

- We do not differentiate between pushdown symbols and states
- The rightmost / upper pushdown symbol represents the state
- Every transition consumes / modifies the upper part of the pushdown

Pushdown Automata

Definition:

A pushdown automaton (PDA) is a tuple

 $M = (Q, T, \delta, q_0, F)$ with:

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in Q$ the start state;
- $F \subseteq Q$ the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$ a finite set of transitions

Pushdown Automata

Definition:

A pushdown automaton (PDA) is a tuple $M = (Q, T, \delta, q_0, F)$ with:

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in O$ the start state:
- $F \subset O$ the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$ a finite set of transitions

We define computations of pushdown automata with the help of transitions; a particular computation state (the current configuration) is a pair:

$$(\gamma, w) \in Q^* \times T^*$$

consisting of the pushdown content and the remaining input.

... for example:

0, 1, 2 States:

Start state: 0 Final states: 0,2

0	a	11
1	a	11
11	b	2
12	b	2

... for example:

 $\begin{array}{ll} \textbf{States:} & 0,1,2 \\ \textbf{Start state:} & 0 \\ \textbf{Final states:} & 0,2 \\ \end{array}$

0	a	11
1	а	11
П	b	2
12	b	2

$$(0, aaabbb) \vdash (11 aabbb)$$

... for example:

States:0,1,2Start state:0Final states:0,2

0	a	11
1	a	11
11	b	2
12	b	2

$$\begin{array}{cccc} (0, & aaabbb) & \vdash & (11, & aabbb) \\ & \vdash & (111, & abbb) \\ & \vdash & (1111, & \textcircled{9}bb) \end{array}$$

... for example:

0	a	11
1	<u>a</u>	11
11	b	2
12	b	2

$$(0, aaabbb) \vdash (11, aabbb) \vdash (111, abbb)$$

80/150

... for example:

 $\begin{array}{ll} \textbf{States:} & 0,1,2 \\ \textbf{Start state:} & 0 \\ \textbf{Final states:} & 0,2 \end{array}$

0	a	11
1	a	11
11	b	2
12	b	2

$$(0, aaabbb) \vdash (11, aabbb) \\ \vdash (111, abbb) \\ \vdash (1111, bbb) \\ \vdash (112, bb)$$

80/150

... for example:

States: 0, 1, 2Start state: Final states: 0.2

0	a	11
1	a	11
11	b	2
12	b	2

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(\alpha \gamma xw) \vdash (\alpha \gamma', w)$$
 for

A computation step is characterized by the relation $\vdash \subset (O^* \times T^*)^2$ with

$$(\alpha \gamma, xw) \vdash (\alpha \gamma', w)$$
 for $(\gamma, x, \gamma') \in \delta$

Remarks:

- The relation \vdash depends of the pushdown automaton M
- The reflexive and transitive closure of ⊢ is called ⊢*
- Then, the language, accepted by M, is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : (q_0, w) \vdash^* f, \epsilon \}$$

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(\alpha \gamma, xw) \vdash (\alpha \gamma', w)$$
 for $(\gamma, x, \gamma') \in \delta$

Remarks:

 \blacksquare The relation \vdash depends of the pushdown automaton MThe reflexive and transitive closure of \vdash is called \vdash^*

• Then, the language, accepted by M, is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : (q_0, w) \vdash^* (f, \epsilon) \}$$

We accept with a final state together with empty input.

Deterministic Pushdown Automaton

Definition:

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions $(\gamma_1, x, \gamma_2), (\gamma_1', x', \gamma_2') \in \delta$ we can assume: Is γ_1 a suffix of γ_1' , then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

... for example:

0	a	11
1	a	11
11	b	2
12	b	2

... this obviously holds

82/150

Pushdown Automata

Theorem:

For each context free grammar G = (N, T, P, S) M. Schützenberger A. Öttinger a pushdown automaton M with $\mathcal{L}(G) = \mathcal{L}(M)$ can be built.

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- \bullet M_G^L to build Leftmost derivations
- M^R_G to build reverse Rightmost derivations

83/150

Syntactic Analysis

Chapter 3: Top-down Parsing

Item Pushdown Automaton

Construction: Item Pushdown Automaton M_G^L

- Reconstruct a Leftmost derivation.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.
- The states are now Items (= rules with a dot):

$$[A \to \alpha \bullet \beta]$$
, $A \to \alpha \beta \in P$

The dot marks the spot, how far the rule is already processed

Item Pushdown Automaton – Example

Our example:

Item Pushdown Automaton - Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

86/150

86/15

Item Pushdown Automaton – Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

Item Pushdown Automaton - Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

86/150

Item Pushdown Automaton – Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

86/150

Item Pushdown Automaton - Example

We add another rule $S' \rightarrow S$ for initialising the construction:

Start state: $[S' \rightarrow \bullet \ S]$ End state: $[S' \rightarrow S \bullet]$

Transition relations:

$[S' \rightarrow \bullet S]$	ϵ	$[S' \to \bullet \ S] [S \to \bullet \ A B]$
$[S \rightarrow \bullet AB]$	ϵ	$[S \to \bullet A B] [A \to \bullet a]$
$[A \rightarrow \bullet a]$	a	$[A \rightarrow a \bullet]$
$[S \rightarrow \bullet AB] A \rightarrow a \bullet]$	ϵ	$[S \rightarrow A \bullet B]$
$[S \rightarrow A \bullet B]$	ϵ	$[S \rightarrow A \bullet B] [B \rightarrow \bullet b]$
[B oullet b]	b	[B ightarrow b ullet]
$[S \rightarrow A \bullet B] [B \rightarrow b \bullet]$	ϵ	$[S \rightarrow A B \bullet]$
$[S' \to \bullet \ S] [S \to A B \bullet]$	ϵ	$[S' \to S \bullet]$

87/150

Item Pushdown Automaton – Example

Our example:

Item Pushdown Automaton - Example

We add another rule $S' \rightarrow S$ for initialising the construction:

Start state: $[S' \rightarrow \bullet \ S]$ End state: $[S' \rightarrow S \bullet]$

Transition relations:

$[S' \rightarrow \bullet S]$	ϵ	$[S' \to \bullet \ S] [S \to \bullet \ A B]$
$[S \rightarrow \bullet AB]$	ϵ	$[S \rightarrow \bullet A B] [A \rightarrow \bullet a]$
$[A \rightarrow \bullet a]$	a	$[A \rightarrow a \bullet]$
$[S \to \bullet AB] [A \to a \bullet]$	ϵ	$[S \rightarrow A \bullet B]$
$[S \rightarrow A \bullet B]$	ϵ	$[S \rightarrow A \bullet B] [B \rightarrow \bullet b]$
[B o ullet b]	b	$[B \rightarrow b \bullet]$
$[S \to A \bullet B] [B \to b \bullet]$	ϵ	$[S \rightarrow A B \bullet]$
$[S' \to \bullet \ S] [S \to A B \bullet]$	ϵ	$[S' \to S \bullet]$

Item Pushdown Automaton

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions:
$$([A \to \alpha \bullet B \ \beta], \epsilon, [A \to \alpha \bullet B \ \beta] \ [B \to \bullet \ \gamma])$$
 for

$$A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P$$

Shifts:
$$([A \rightarrow \alpha \bullet a \beta], a, [A \rightarrow \alpha a \bullet \beta])$$
 for $A \rightarrow \alpha a \beta \in P$

Reduces:
$$([A \to \alpha \bullet B \beta] [B \to \gamma \bullet], \epsilon, [A \to \alpha B \bullet \beta])$$
 for

$$A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P$$

Items of the form: $A \to \alpha \bullet$ are also called complete. The item pushdown automaton shifts the dot once around the

derivation tree ...

88/150

Discussion:

Item Pushdown Automaton

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item $[A \rightarrow \alpha \bullet B \beta]$ the following holds:

$$([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon)$$
 iff $B \to^* w$

• LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

89/150

Item Pushdown Automaton

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions:
$$([A \to \alpha \bullet B \ \beta], \epsilon, [A \to \alpha \bullet B \ \beta] \ [B \to \bullet \ \gamma])$$
 for

$$A \rightarrow \alpha B \beta, P \rightarrow \gamma \in P$$

Shifts:
$$([A \rightarrow \alpha \bullet a \beta], a, [A \rightarrow \alpha a \bullet \beta])$$
 for $A \rightarrow \alpha a \beta \in P$

Reduces:
$$([A \rightarrow \alpha \bullet B \beta] [B \rightarrow \gamma \bullet], \epsilon, [A \rightarrow \alpha B \bullet \beta])$$
 for

$$A \to \alpha B \beta, B \to \gamma \in P$$

Items of the form: $[A \to \alpha \bullet]$ are also called complete The item pushdown automaton shifts the dot once around the derivation tree ...

Item Pushdown Automaton

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions:
$$([A \rightarrow \alpha \bullet B \beta], \epsilon, [A \rightarrow \alpha \bullet B \beta] [B \rightarrow \bullet \gamma])$$
 for

$$A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P$$

Shifts:
$$([A \rightarrow \alpha \bullet a \beta], a, [A \rightarrow \alpha a \bullet \beta])$$
 for $A \rightarrow \alpha a \beta \in P$

$$A \to \alpha B \beta, B \to \gamma \in P$$

Items of the form: $[A \to \alpha \bullet]$ are also called complete The item pushdown automaton shifts the dot once around the derivation tree ...

88/15

Item Pushdown Automaton

Beispiel: $S \rightarrow \epsilon \mid aSb$

The transitions of the according Item Pushdown Automaton:

$\boxed{0 \mid [S' \to \bullet S]}$	$\epsilon [S' \to \bullet S] [S \to \bullet]$
$1 \boxed{[S' \to \bullet S]}$	$\epsilon [S' \rightarrow \bullet S] [S \rightarrow \bullet a S b]$
$2 \left[S \rightarrow \bullet a S b \right]$	$ [S \rightarrow a \bullet S b] $
$ S = [S \rightarrow a \bullet Sb]$	$\epsilon [S \rightarrow a \bullet S b] [S \rightarrow \bullet]$
$4 \mid [S \rightarrow a \bullet S b]$	$\epsilon [S \rightarrow a \bullet S b] [S \rightarrow \bullet a S b]$
$ 5 \mid [S \rightarrow a \bullet S b] [S \rightarrow \bullet] $	$\epsilon \mid [S \rightarrow a S \bullet b]$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\epsilon \mid [S \rightarrow a S \bullet b]$
$7 \mid [S \rightarrow a \ S \bullet b]$	$b \mid [S \rightarrow a S b \bullet]$
$ 8 \mid [S' \to \bullet S] [S \to \bullet] $	$\epsilon \mid [S' \rightarrow S \bullet]$
$9 \mid [S' \to \bullet S] [S \to a S b \bullet]$	$\epsilon \mid [S' \to S \bullet]$

Conflicts arise between the transitions (0,1) and (3,4), resp..

90/150

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

91/150

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue computing in parallel.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue computing in parallel.

Idee 2: Recursive Descent & Backtracking

Depth-first search for an appropriate solution.

91/150

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue computing in parallel.

Idee 2: Recursive Descent & Backtracking

Depth-first search for an appropriate solution.

Idee 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input symbol.

Structure of the LL(1)-Parser:

- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table M[q, w] contains the rule of choice.

Topdown Parsing

Idee:

- Emanate from the item pushdown automaton
- Consider the next symbol to determine the appropriate rule for the next expansion
- A grammar is called LL(1) if a unique choice is always possible

Topdown Parsing

Idee:

- Emanate from the item pushdown automaton
- Consider the next symbol to determine the appropriate rule for the next expansion
- A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1), Philip Lewis if for each two distinct rules $A \rightarrow \alpha$, $A \rightarrow \alpha' \in P$ and each derivation $S \to_L^* uA\beta$ with $u \in T^*$ the following is valid:

$$\mathsf{Firs}_{\mathsf{I}}(\alpha\beta) \, \cap \, \mathsf{Firs}_{\mathsf{I}}(\alpha'\beta) = \emptyset$$

Topdown Parsing

Example 1:

$$S \rightarrow \begin{array}{c} \text{if } (E) S \text{ else } S \\ \hline \text{while } (E) S \end{array} | E \rightarrow \text{id}$$

is LL(1), since $First_1(E) = \{id\}$

Topdown Parsing

Example 1:

is LL(1), since $First_1(E) = \{id\}$

Example 2:

94/150

Lookahead Sets

Definition:

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{\epsilon \mid \epsilon \in L\} \cup \{u \in T \mid \exists v \in T^* : uv \in L\}$$

Example:

Lookahead Sets

Definition:

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) = \{ \epsilon \mid \epsilon \in L \} \cup \{ u \in T \mid \exists v \in T^* : uv \in L \}$$

Example:

the prefixes of length 1

Lookahead Sets

Arithmetics:

First₁(_) is compatible with union and concatenation:

$$\begin{array}{lll} \mathsf{First}_1(\emptyset) & = & \emptyset \\ \mathsf{First}_1(L_1 \cup L_2) & = & \mathsf{First}_1(L_1) \cup \mathsf{First}_1(L_2) \\ \mathsf{First}_1(L_1 \cdot L_2) & = & \mathsf{First}_1(\mathsf{First}_1(L_1) \cdot \mathsf{First}_1(L_2)) \\ & := & \mathsf{First}_1(L_1) \odot \mathsf{First}_1(L_2) \end{array}$$

1 – concatenation

Observation:

Let $L_1, L_2 \subseteq T \cup \{\epsilon\}$ with $L_1 \neq \emptyset \neq L_2$. Then:

$$L_1 \odot L_2 = \left\{ egin{array}{ll} L_1 & ext{ if } \epsilon
otin L_1 \\ (L_1 ackslash \{\epsilon\}) \cup L_2 & ext{ otherwise} \end{array}
ight.$$

If all rules of G are productive, then all sets $\mathsf{First}_1(A)$ are non-empty.

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: F_{ϵ}

• Let empty(X) = true iff $X \rightarrow^* \epsilon$.

$$\underbrace{F_{\epsilon}(X_{1}...[X_{m})}_{F_{\epsilon}(X_{i})} = \underbrace{\bigcup_{i=1}^{j} F_{\epsilon}(X_{i})}_{\text{if}} \underbrace{\text{empty}(X_{1}) \wedge \ldots \wedge \text{empty}(X_{j-1})}_{\text{empty}}$$

97/15

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: F_{ϵ}

- Let empty(X) = true iff $X \rightarrow^* \epsilon$.
- ullet $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $\mathrm{empty}(X_1) \wedge \dots \wedge \mathrm{empty}(X_{j-1})$

We characterize the ϵ -free First₁-sets with an inequality system:

$$\begin{array}{lll} F_{\epsilon}(a) & = & \{a\} & \text{if} & a \in T \\ F_{\epsilon}(A) & \supseteq & F_{\epsilon}(X_{j}) & \text{if} & A \to X_{1} \dots X_{m} \in P, \\ & & \text{empty}(X_{1}) \ \land \dots \land \ \text{empty}(X_{j-1}) \end{array}$$

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

97/150