Script generated by TTT

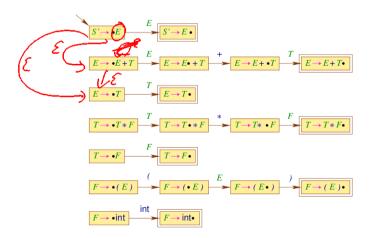
Title: Simon: Compilerbau (27.05.2013)

Date: Mon May 27 14:34:00 CEST 2013

Duration: 76:07 min

Pages: 28

Characteristic Automaton



Characteristic Automaton

Observation:

The set of viable prefixes from $(N \cup T)^*$ for (admissible) items can be computed from the content of the shift-reduce parser's pushdown with the help of a finite automaton:

States: Items

Start state: $[S' \rightarrow \bullet S]$

Final states: $\{[B \rightarrow \gamma \bullet] \mid B \rightarrow \gamma \in P\}$

Transitions:

(1)
$$([A \to \alpha \bullet X \beta], X, [A \to \alpha X \bullet \beta]), X \in (N \cup T), A \to \alpha X \beta \in P;$$

(2) $([A \to \alpha \bullet B \beta], \epsilon, [B \to \bullet \gamma]), A \to \alpha B \beta, B \to \gamma \in P;$

The automaton c(G) is called characteristic automaton for G.

117/150

Characteristic Automaton

Observation:

The set of viable prefixes from $(N \cup T)^*$ for (admissible) items can be computed from the content of the shift-reduce parser's pushdown with the help of a finite automaton:

States: Items

Start state: $[S' \rightarrow \bullet S]$

Final states: $\{[B \rightarrow \gamma \bullet] \mid B \rightarrow \gamma \in P\}$

Transitions:

- (1) $([A \to \alpha \bullet X \beta], X, [A \to \alpha X \bullet \beta]), X \in (N \cup T), A \to \alpha X \beta \in P;$
- (2) $([A \to \alpha \bullet B \beta], \epsilon, [B \to \bullet \gamma]), A \to \alpha B \beta, B \to \gamma \in P;$

The automaton c(G) is called characteristic automaton for G.

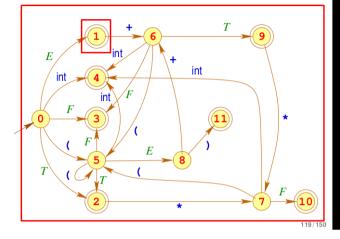
110

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from c(G) by:

- **o** performing arbitrarily many ϵ -transitions after every consuming transition
- performing the powerset construction

... for example:



Canonical LR(0)-Automaton

Therfore we determine:

$$\begin{array}{c} \boxed{q_0} = \begin{bmatrix} \{[S' \rightarrow \bullet E], \\ [E \rightarrow \bullet E + T], \\ [E \rightarrow \bullet T], \\ [T \rightarrow \bullet T * F]\} \\ [T \rightarrow \bullet F], \\ [F \rightarrow \bullet (E)], \\ [F \rightarrow \bullet \inf] \} \end{bmatrix} \begin{array}{c} q_1 = \delta(q_0, E) = \begin{bmatrix} \{[S' \rightarrow E \bullet], \\ [E \rightarrow E \bullet + T]\} \end{bmatrix} \\ \boxed{q_2} = \delta(q_0, T) = \begin{bmatrix} \{[E \rightarrow T \bullet], \\ [T \rightarrow T \bullet * F]\} \end{bmatrix} \\ \boxed{q_3} = \delta(q_0, F) = \{[T \rightarrow F \bullet]\} \end{bmatrix}$$

 $q_4 = \delta(q_0, \text{int}) = \{ [F \rightarrow \text{int} \bullet] \}$

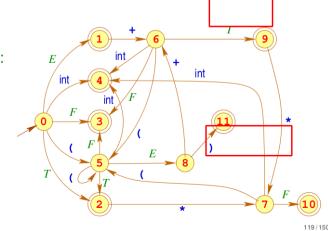
120 / 150

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from c(G) by:

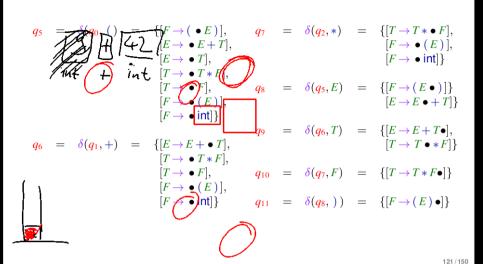
- lacktriangledown performing arbitrarily many ϵ -transitions after every consuming transition
- performing the powerset construction

... for example:



Canonical LR(0)-Automaton

Canonical LR(0)-Automaton



Canonical LR(0)-Automaton

Therfore we determine:

$$\begin{array}{llll} q_0 & = & \{[S' \rightarrow \bullet E], & q_1 & = & \delta(q_0, E) & = & \{[S' \rightarrow E \bullet], \\ [E \rightarrow \bullet E + T], & [E \rightarrow \bullet T], & [E \rightarrow \bullet T], \\ [T \rightarrow \bullet T * F]\} & q_2 & = & \delta(q_0, T) & = & \{[E \rightarrow T \bullet], \\ [T \rightarrow \bullet F], & [T \rightarrow T \bullet * F]\} & [T \rightarrow T \bullet * F]\} \end{array}$$

$$\begin{array}{lll} q_2 & = & \delta(q_0, T) & = & \{[E \rightarrow T \bullet], \\ [T \rightarrow T \bullet * F]\} & [T \rightarrow T \bullet * F]\} \end{array}$$

$$\begin{array}{lll} q_3 & = & \delta(q_0, F) & = & \{[T \rightarrow F \bullet]\} \end{array}$$

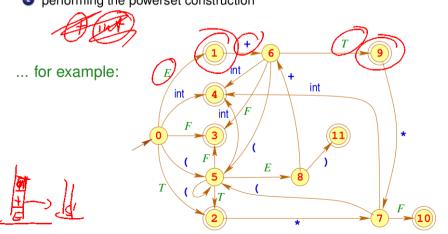
$$\begin{array}{lll} q_4 & = & \delta(q_0, Int) & = & \{[F \rightarrow Int \bullet]\} \end{array}$$

120 / 150

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from c(G) by:

- lacktriangledown performing arbitrarily many ϵ -transitions after every consuming transition
- performing the powerset construction



Canonical LR(0)-Automaton

Therfore we determine:

$$\begin{array}{llll} q_0 & = & \{[S' \rightarrow \bullet E], & q_1 & = & \delta(q_0, E) & = & \{[S' \rightarrow E \bullet], \\ [E \rightarrow \bullet E + T], & [E \rightarrow E \bullet T], \\ [E \rightarrow \bullet T], & [E \rightarrow \bullet T * F]\} & q_2 & = & \delta(q_0, T) & = & \{[E \rightarrow T \bullet], \\ [T \rightarrow \bullet F], & [T \rightarrow T \bullet F]\} & [T \rightarrow T \bullet F]\} & q_3 & = & \delta(q_0, F) & = & \{[T \rightarrow F \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = & \{[F \rightarrow \inf \bullet]\} & q_4 & = & \delta(q_0, \inf) & = &$$

LR(0)-Parser

Idea for a parser:

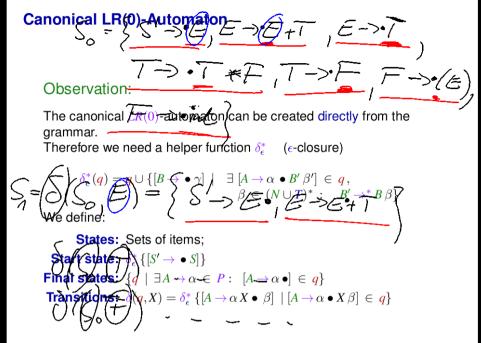
- The parser manages a viable prefix $\alpha = X_1 \dots X_m$ on the pushdown and uses LR(G), to identify reduction spots.
- It can reduce with $A \to \gamma$, if $[A \to \gamma \bullet]$ is admissible for α

Optimization:

We push the states instead of the X_i in order not to process the pushdown's content with the automaton anew all the time. Reduction with $A \to \gamma$ leads to popping the uppermost $|\gamma|$ states and continue with the state on top of the stack and input A.

Attention:

This parser is only deterministic, if each final state of the canonical LR(0)-automaton is conflict free.



122/150

LR(0)-Parser

... for example:

$$\begin{array}{lll} q_1 & = & \{[S' \rightarrow E \bullet], \\ & [E \rightarrow E \bullet + T]\} \end{array}$$

$$\begin{array}{lll} q_2 & = & \{[E \rightarrow T \bullet], \\ & [T \rightarrow T \bullet *F]\} \end{array}$$

$$\begin{array}{lll} q_9 & = & \{[E \rightarrow E + T \bullet], \\ & [T \rightarrow T \bullet *F]\} \end{array}$$

$$\begin{array}{lll} q_3 & = & \{[T \rightarrow F \bullet]\} \end{array}$$

$$\begin{array}{lll} q_{10} & = & \{[T \rightarrow T *F \bullet]\} \end{array}$$

$$\begin{array}{lll} q_{11} & = & \{[F \rightarrow (E) \bullet]\} \end{array}$$

The final states q_1, q_2, q_3 contain more then one admissible item \Rightarrow non deterministic!

LR(0)-Parser

The construction of the LR(0)-parser:

States: $Q \cup \{f\}$ (f fresh)Start state: g_0 Final state: fTransitions:

 $\begin{array}{llll} \textbf{Shift:} & (p,a,p\,q) & \text{if} & q=\delta(p,a)\neq\emptyset \\ \textbf{Reduce:} & (p\,q_1\ldots q_m,\epsilon,p\,q) & \text{if} & [A\to X_1\ldots X_m\,\bullet]\in q_m, \\ & q=\delta(p,A) & \\ \textbf{Finish:} & (q_0\,p,\epsilon,f) & \text{if} & [S'\to S\bullet]\in p \end{array}$

with $LR(G) = (Q, T, \delta, q_0, F)$.

LR(0)-Parser

Correctness:

we show:

The accepting computations of an LR(0)-parser are one-to-one related to those of a shift-reduce parser M_G^R .

we conclude:

- The accepted language is exactly $\mathcal{L}(G)$
- The sequence of reductions of an accepting computation for a word $w \in T$ yields a reverse rightmost derivation of G for w

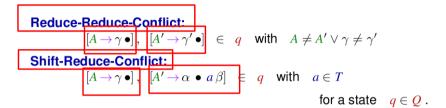
126 / 150

LR(0)-Parser

Attention:

Unfortunately, the LR(0)-parser is in general non-deterministic.

We identify two reasons:



Those states are called LR(0)-unsuited.

127/150

LR(k)-Grammars

Idea: Apply k-lookahead to solve conflicts.

Definition:

The reduced contextfree grammar G is called LR(k)-grammar, if for First w = First w with:

LR(k)-Grammar

for example:

(1) $S \rightarrow A \mid B \quad A \rightarrow aAb \mid 0 \quad B \rightarrow aBbb \mid 1$... is not LL(k) for any k — but LR(0):

Let $S \rightarrow_R^* \alpha X w \rightarrow \alpha \beta w$. Then $\alpha \underline{\beta}$ is of one of these forms:

$$A, B, a^n a A b, a^n a B b b, a^n 0, a^n 1 \quad (n \ge 0)$$

LR(k)-Grammar

for example:

(1) $S \rightarrow A \mid B \quad A \rightarrow aAb \mid 0 \quad B \rightarrow aBbb \mid 1$... is not LL(k) for any k — but LR(0):

Let $S \to_R^* \alpha X w \to \alpha \beta w$. Then $\alpha \underline{\beta}$ is of one of these forms:

$$\underline{A}$$
, \underline{B} , $a^n \underline{a} \underline{A} \underline{b}$, $a^n \underline{a} \underline{B} \underline{b} \underline{b}$, $a^n \underline{0}$, $a^n \underline{1}$ $(n \ge 0)$

(2) $S \rightarrow aAc$ $A \rightarrow Abb \mid b$... is also LR(0):
Let $S \rightarrow_R^* \alpha X w \rightarrow \alpha \beta w$. Then $\alpha \underline{\beta}$ is of one of these forms:

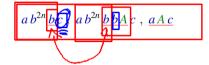
 $a\underline{b}$, $a\underline{A}\underline{b}\underline{b}$, $\underline{a}\underline{A}\underline{c}$

LR(k)-Grammar

for example:

(3) $S \rightarrow aAc$ $A \rightarrow \underline{b} \, \underline{b} \, A \mid b$... is not LR(0) but LR(1):

Let $S \rightarrow_R^* \alpha X w \rightarrow \alpha \beta w$ with $\{y\} = \mathsf{First}_k(w)$ then $\alpha \beta y$ is of one of these forms:



130 / 150

LR(k)-Grammar

for example:

(3) $S \rightarrow aAc$ $A \rightarrow bbA \mid b$... is not LR(0), but LR(1): Let $S \rightarrow_R^* \alpha X w \rightarrow \alpha \beta w$ with $\{y\} = \text{First}_k(w)$ then $\alpha \beta y$ is of one of these forms:

$$ab^{2n}\underline{b}c$$
, $ab^{2n}\underline{b}b\underline{A}c$, $\underline{a}\underline{A}c$

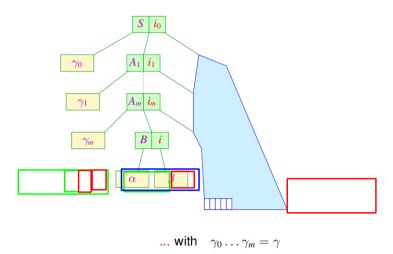
(4) $S \rightarrow aAc$ $A \rightarrow bAb$ b ... is not LR(k) for any $k \ge 0$:

Consider the rightmost derivations:

$$S \to_R^* a b^n A b^n c \to a b^n b b^1 c$$

Ende der Präsentation. Klicken Sie zum Schließen.

LR(1)-Items



132/15

The Characteristic LR(1)-Automaton

The automaton c(G, 1):

States: LR(1)-items

Start state: $[S' \rightarrow \bullet S, \epsilon]$

Final states: $\{[B \rightarrow \gamma \bullet, x] \mid B \rightarrow \gamma \in P, x \in \mathsf{Follow}_1(B)\}$

Transitions:

(1)
$$([A \rightarrow \alpha \bullet X \beta, x], X, [A \rightarrow \alpha X \bullet \beta, x]), X \in (N \cup T)$$

(2) $([A \rightarrow \alpha \bullet B \beta, x], \epsilon, [B \rightarrow \bullet \gamma, x']),$

 $A \rightarrow \alpha B \beta$, $B \rightarrow \gamma \in P, x' \in \mathsf{First}_1(\beta) \odot \{x\}$;

This automaton works like c(G) — but additionally manages a 1-prefix from Follow1 of the left-hand sides.

133/150

The canonical LR(1)-automaton

The canonical LR(1)-automaton LR(G,1) is created from c(G,1), by performing arbitrarily many ϵ -transitions and then making the resulting automaton deterministic ...

The canonical LR(1)-automaton

The canonical LR(1)-automaton LR(G,1) is created from c(G,1), by performing arbitrarily many ϵ -transitions and then making the resulting automaton deterministic ...

But again, it can be constructed directly from the grammar Analoguously to LR(0), we need a helper function:

$$\delta_{\epsilon}^{*}(q) = q \cup \{ [B \to \bullet \gamma, x] \mid \exists [A \to \alpha \bullet B' \beta', x'] \in q, \beta \in (N \cup T)^{*} : B' \to^{*} B \beta \land x \in \mathsf{First}_{1}(\beta \beta') \odot \{x'\} \}$$

The canonical LR(1)-automaton

The canonical LR(1)-automaton LR(G,1) is created from c(G,1), by performing arbitrarily many ϵ -transitions and then making the resulting automaton deterministic ...

But again, it can be constructed directly from the grammar Analoguously to LR(0), we need a helper function:

$$\delta_{\epsilon}^*(q) = \underset{\boldsymbol{q}}{\boldsymbol{q}} \cup \left\{ [\boldsymbol{B} \rightarrow \bullet \gamma, \boldsymbol{x}] \mid \exists [\boldsymbol{A} \rightarrow \boldsymbol{\alpha} \bullet \boldsymbol{B}' \ \boldsymbol{\beta}', \boldsymbol{x}'] \in \underset{\boldsymbol{q}}{\boldsymbol{q}}, \boldsymbol{\beta} \in (\boldsymbol{N} \cup \boldsymbol{T})^* : \boldsymbol{B}' \rightarrow^* \boldsymbol{B} \ \boldsymbol{\beta} \ \wedge \boxed{\boldsymbol{x} \in \mathsf{First}_1(\boldsymbol{\beta} \ \boldsymbol{\beta}') \odot \{\boldsymbol{x}'\}\} \right\}$$

Then, we define:

States: Sets of LR(1)-items; Start state: $\delta_{\epsilon}^* \{ [S' \rightarrow \bullet S, \epsilon] \}$

Start state. $[0_{\epsilon}, \{[S \rightarrow \bullet S, \epsilon]\}]$

Final states: $\{q \mid \exists A \to \alpha \in P : [A \to \alpha \bullet, x] \in q\}$

Transitions: $\delta(q,X) = \delta_{\epsilon}^* \left[A \to \alpha X \bullet \beta, x \right] \mid [A \to \alpha \bullet X \beta, x] \in q$