Characteristic Automaton

Script generated by TTT

Observation:
The set of viable prefixes from (VU T)* for (admissible) items can be
computed from the content of the shift-reduce parser's pushdown

Title: Simon: Compilerbau (27.05.2013) with the help of a finite automaton:
Date: Mon May 27 14:34:00 CEST 2013 States: ltems
Start state: [S" — o]
Duration: 76:07 min Final states: {(B—~e] |B—~ € P}
Transitions:
Pages: 28 (1) (A—aeXpBlX,JA—aXefb]), X e (NUT) A—aXs € P;
(2) ([A—aeBfle, B— e7]), A—aBp, B—vy € P

The automaton ¢(G) is called characteristic automaton for G.

117/150

Characteristic Automaton Characteristic Automaton
for example: E — E+T | 1T
i - IVZ- . ’Lt Observation:
» (£) | in The set of viable prefixes from (N U T)* for (admissible) items can be
. computed from the content of the shift-reduce parser's pushdown
N L5E with the help of a finite automaton:

g’ E T | .
--!-.'+T| w| E—+Eo+T | +,_[._' v E+ T ,_I[." S E+Te States: Iltems

£ E
LE _ Start state: [/ — e 5]
S[E=T {E—~Te Final states: {[B—~e] | B—~ € P}

[T --T*;—']i»' T Ten T T 1—[» T >TxFe Transitions:
_ (1) (AraeXf]X, A raXefd]), X e (NUT) A—aXi c P;

[T] F T (2) ([A—aeBfle [B— ov]), A—aBj, B~y € P;
(E)

[P o) || P 0B | e (Be) prg P () | The automaton ¢(G) is called characteristic automaton for G.

F int "t F inte

|

118/150 117/150

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from ¢(G) by:
@ performing arbitrarily many e-transitions after every consuming
transition
@ performing the powerset construction

... for example:

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from ¢(G) by:
@ performing arbitrarily many e-transitions after every consuming
transition
@ performing the powerset construction

... for example:

119/150

Canonical LR(0)-Automaton

Therfore we determine:

qo | = { S e b] qr =

[

[

[:

P"—.» o TxF|} g =
[

[

F— eint]} 4 g3 =

44 =

Canonical LR(0)-Automaton

(g0, ()

I
—

r(eE)], g1
» OE-‘rTJ,

> o T,

> T xF],

y OFJ, qs
> o (E)],

> oint]}

e B B B I e e |

qo
»E+ e TJ,
o T F],
. F, qi
o (E)],
eint]} qi

ia,+) = |

d6 =

NN

(g(q“_’ b) = [S" — b.]:
[£E—Ee+T]}
0(qo, T) = |{[E—Te],
[T —TexF|}
0(go,) = {F—rFe]}
(g(q()., |nt) = {U‘ — |nt0]}
= (i(ql,*) = {[T)T*OF],
[F— e(E)],
[F)OintJ}
= g5, E) = {[F—(Ee)]}
[E—~Ee+T]}
= dge,T) = {[E—E+Te],
[T— TexF|}
o = 0gnF) = {[I—=TxFe]}
o= 0gs,) = A{[F—(E)e]}

F =2t

Canonical LR(0)-Automaton o
=

gs ==rpdonl) 1—= » (e E)], g1 = 0(g,*%) = {[T—=T=eF],
%Bm > OE+T], [F _).(E)J‘
F

T [E— eT], [F— eint]}
@ “’lt [I— o T*}‘@
[T-—7%)1, gs = dlgs,E) = {[F—>(Fe)]}
[F @ I [E—Ee+T]}
[F > mt]}
9 = O6(gs, T) = {[E—E+Te,
g = O(q,+) = {[E—=E+eT], [T — TexF|}
[T S) T*F],
[T— o F], qio = 0(gr, F) = {[T—T=Fe]}

=

[F).(E”,
[F@nt]} = (gs.)) = A{F—(E)e]}

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from ¢(G) by:
@ performing arbitrarily many e-transitions after every consuming
transition
© performing the powerset construction

... for example:
\/
[int \/
‘_/,6 Foz 3\) | 28 ‘ .
P N P |
NI e
""‘7'-55“/ —(8 |
D) Q T \(C'/v; R Y
f I r
N2 7

Therfore we determine:

q = A{[S

Therfore we determine:

@ = {[§

Canonical LR(0)-Automaton

q1

q:

qi3

q4

Canonical LR(0)-Automaton

q1

q2

q3

q4

5(qo, E

5(qo, 1

3qo,

5(qo,

3(q0, E

5(q0,

3(qo,

3(qo,

{[E—Te].
[T —TexF|}

{[T"— Fe]}

{[F —inte]}

{[S — Es],
[E—~Ee+T]}

{[E T4,
(77T exF]}

)

{[F —inte]}

120/150

120/150

LR(0)-Parser

|dea for a parser:
@ The parser manages a viable prefix a = X, ...X,, onthe
pushdown and uses LR(G) , to identify reductlon spots.
@ It can reduce with A — ~ , if [A — ~] is admissible for «

Optimization:

We push the states instead of the X; in order not to process the
pushdown'’s content with the automaton anew all the time.
Reduction with A — + leads to popping the uppermost || states and
continue with the state on top of the stack and input A.

Attention:

This parser is only deterministic, if each final state of the canonical
LR(0)-automaton is conflict free.

LR(0)-Parser

.. for example:
g = {[S—Ee],
[E—E e +T]}
g = {[E—Th], @ = {[E-E+Ts],
[T—TexFl} [T T exF|}
¢ = ([T~ Fe g0 = {[T—TxFe]}
gn = {[F—(E)e]}

% [F-—inte

The final states ¢, g2, q‘_l contain more then one admissible item |
= non deferministic!

123/150

124/150

&

Canomgal LR;O)iAutov@o @1" ST el

2T el /—>2: ,—._5./6_)

Observation:—

The canonical ,ﬁﬁ(())faiutoﬁagr_fgn can be created directly from the
grammar.
Therefore we need a helper furfction o;

LT
edeﬂne’

States: Sets of items;
Fé

3 @{[s’—.» 5]}
t d|JA=ra—e P: [A=ae| € g}

Tr: g, X) =d: {[A—aXe [|[[A—aeXj] € g}
o)

(e-closure)

dA—saeB] € g,

‘gf‘wf ST

-
S — -

122/150

LR(0)-Parser

The construction of the LR(0)-parser:

States: QU {f}
Start state: ¢
Final state: 1

(f fresh)

Transitions:
Shift: (p.apg) | f g=0d(p.a) #0
Reduce: (par.. gu,€,pg) if A—=Xi...X 0 € gu,
qg=4d(p,A)
Finish: (qop,e.f) if [§—Se] €p
with LR(G) = (Q T: (?,(]U,F) -

125/150

LR(0)-Parser

Correctness:

we show:

The accepting computations of an LR(0)-parser are one-to-one
related to those of a shift-reduce parser M.

we conclude:
@ The accepted language is exactly £(G)

@ The sequence of reductions of an accepting computation for a
word w € T yields a reverse rightmost derivation of G for w

LR(k)-Grammars

\dea: Apply k-lookahead to solve conflicts.

Definition:
The reduced contextfree grammar G is called LR(k)-grammar, if for

Firgfiw) = Firs‘jx) with:

126 /150

S =% | aAw — o”}follows: 0

! !
: = a=a [NNA=A"|Aw =x
S —=r AW | = afx]

128/150

LR(0)-Parser

Attention:

Unfortunately, the LR(0)-parser is in general non-deterministic.

We identify two reasons:

Reduce-Beduce-Canflict:

[A—ye]}

[A"—=~"e]| € g

| shift-Reduce-Confl

[A -7 .] E

Those states are calleg

LR(k)-Grammar

for example:

(1) S—A|B

... is not LL(k) for any & — but

Let S—jpaXw—alw.

forms:

A, B,ad"aAb,ad"aBbb,d" 0, d1

[A"—waeaf] E

with A #A'Vy #+

g with aeT

for a state

LR(0)-unsuited.

A—aAb | 0 B—aBbb | 1
LR(0) :
Then «f is of one of these

(n>0)

127/150

129/150

LR(k)-Grammar

for example:

(1) S—A|B A—aAb |0 B-—aBbb | 1
... is not LL(k) for any k — but LR(0) :

Let S—zaXw—afw. Then «fj isofoneofthese
forms:

A, B,d"aAb, ad"aBbb,d"0,d"1 (n>0)

(2) S—aAc A—Abb | b
... is also|LR(0) :

Let S—yaXw—afw. Then «fp isofoneofthese
forms:

ab,aAbb, aAc
LR(k)-Grammar

for example:

(3) S—aAc A—bbA | b
Let S—paXw—afgw with {y}=First(w) then
a By is of one of these forms:

ab™be, ab”bbAc, aAc
(4) S—aAc

A—bAb |
k>0

Consider the rightmost derivations:

... is not LR(k) for any

-
S—pab"Ab" c—la ffg U |

... is not LR(0), but LR(1) :

LR(k)-Grammar

for example:

(3) S—adc ... is not LR(0)

Let S—jpaXw—afw with {y}=First(w)
afBy is of one of these forms:

.]211] ']2”]'3.'14‘
LIJK)'@LIJ ’i aAcC

(=
I

_

A—bbA | b

Ende der Prasentation. Klicken Sie zum SchlieBen.

R

LR(1)-ltems

e / .
. / ~
/ ~
‘ Yo Ay | i [
- + .
s : ~
e : .
- : .
Al ‘ f‘llh‘l i}f} 1
\ .
/ .
B|i

The|canonical LR(1)-automaton

The canonical LE(1)-automaton LR(G, 1) is created from ¢(G, 1), by
performing arbitrarily many e-transitions and then making the
resulting automaton deterministic ...

132/150

134/150

The automaton

States:
Start state:
Final states:

Transitions:

LR(1)-items
[S"— o5, €
{[B—~ye,x] | B—~ € P,x € Follow,(B)}

The Characteristic LR(1)-Automaton

¢(G. 1) :

(1) (A—aeXp,x]X[A—aXef x]), X € (NUT)

This automaton works like ¢(G) — but additionally manages a 1-prefix

2) ([A—.‘*Oﬁ’b’ﬂ_‘ x}:g: [54} ., XID,
A—aBf, B~y € P,x' € Firsti(8) © {x};

from Follow, of the left-hand sides.

The canonical LR(1)-automaton L.R(G, 1) is created from ¢(G, 1), by

The canonical LR(1)-automaton

performing arbitrarily many e-transitions and then making the
resulting automaton deterministic ...

But again, it can be constructed directly from the grammar
Analoguously to LR(0), we need a helper function:

3 (g) =qU

[b’—} Lo

X

dA—aeB p' X € g, (NUT)* :

B'+*Bf A xeFirsti(85") © {x'}}

1347150

The canonical LR(1)-automaton

The canonical LR(1)-automaton LR(G, 1) is created from ¢(G, 1), by
performing arbitrarily many e-transitions and then making the
resulting automaton deterministic ...

But again, it can be constructed directly from the grammar
Analoguously to LR(0), we need a helper function:

gy =quU{[B— e~ x| F[A—aeB 3 X] €q,0 (NUT)" :
B'—*Bj3 A|x e First(38") @ {x'}}

Then, we define:

States: | Sets of LR(1)-items; |
Start state:| 57 {[s' — e 5, e]|}
Final states: {g | 3A —~a € P: | [A—ae, x]le q}
Transitions: 6(q,X) =6. (1 ~aX e 8, 3] |4~ aeX B, x]c q}

134/150

