Script generated by TTT

Title: Simon: Compilerbau (17.06.2013)
Date: Mon Jun 17 14:17:18 CEST 2013
Duration: 88:10 min

Pages: 50

Alternative Resolution of Visibility

@ resolving identifiers can be done using an L-attributed grammar
@ eqguation system for basic block must add and remove identifiers

Resolving: Rewriting the Syntax Tree

d declaration node int a, b; // V, W

b = 5; —
b basic block if (b>3) |
. int a, ¢; // X, Y
a assignment a=3;

- D
=
w
o

49/ 5¢

Alternative Resolution of Visibility
@ resolving identifiers can be done using an L-attributed grammar
@ equation system for basic block must add and remove identifiers

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

in front of if-statement

Alternative Resolution of Visibility

@ resolving identifiers can be done using an L-attributed grammar
@ equation system for basic block must add and remove identifiers

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

in front of if-statement

then-branch

50/59

Alternative Resolution of Visibility
@ resolving identifiers can be done using an L-attributed grammar
@ equation system for basic block must add and remove identifiers

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

else-branch

in front of if-stateme then-branch

50/59

Alternative Resolution of Visibility
@ resolving identifiers can be done using an L-attributed grammar
@ eqguation system for basic block must add and remove identifiers

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

alrt.
Mt
in front@f if-statement then-branch else-branch

@ instead of lists of symbols, it is possible to use a list of hash
tables ~» more efficient in large, shallow programs

50/59

Alternative Resolution of Visibility
@ resolving identifiers can be done using an L-attributed grammar
@ equation system for basic block must add and remove identifiers

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

in front of if-statement then-branch else-branch

@ instead of lists of symbols, it is possible to use a list of hash
tables ~» more efficient in large, shallow programs
@ a more elegant solution is to use a persistent tree in which an
update returns a new tree but leaves all old references to the tree
unchanged
@ a persistent tree r can be passed down into a basic block where
new elements may be added; after examining the basic block, the
analysis proceeds with the unchanged ¢

50/59

Forward Declarations Forward Declarations

Most programming language admit the definition of recursive data Most programming language admit the definition of recursive data
types and/or recursive functions. types and/or recursive functions.
@ a recursive definition needs to mention a name that is currently @ arecursive definition needs to mention a name that is currently
being defined or that will be defined later on being defined or that will be defined later on
@ old-fashion programming languages require that these cycles are @ old-fashion programming languages require that these cycles are
broken by a forward declaration broken by a forward declaration

Consider the declaration of an alternating linked list in C:

struct listl;

struct listl .
struct 1ist0 { stgggg_i;g;l {
- ; double info;
int info; Ef——k 1ist0s ¢
struct listls next; stiuct 15TUw nexts
y o~}
51/59 51/59
Forward Declarations Forward Declarations
Most programming language admit the definition of recursive data Most programming language admit the definition of recursive data
types and/or recursive functions. types and/or recursive functions.
@ a recursive definition needs to mention a name that is currently @ a recursive definition needs to mention a name that is currently
being defined or that will be defined later on being defined or that will be defined later on
@ old-fashion programming languages require that these cycles are @ old-fashion programming languages require that these cycles are
broken by a forward declaration broken by a forward declaration
Consider the declaration of an alternating linked list in C: Consider the declaration of an alternating linked list in C:

struct listl; . struct listl; ,
t t listl t t listl
struct 1list0 { struc 1s { struct list0 { struc is {

. . double info; . .
int info; struct listO+ next; int info;
struct listls next; ! struct listls* next;)

/ }

double info;
struct 1ist0x next;

1

~+ the first declaration struet 1istl; is a forward declaration. ~+ the first declaration struet 1ist1; is a forward declaration.
Alternative: automatically add a forward declaration into the symbol
table and check that all these entries have been declared by the time
the symbol goes out of scope

51/59

Declarations of Function Names
An analogous mechanism is need for (recursive) functions:
@ in case a recursive function merely calls itself, it is sufficient to

add the name of a function to the symbol table before visiting its
body; example:

int fac(int i) {
—
return ixfac(i-1);

}

52

59

Overloading of Names

The problem of using names before their declarations are visited is
also common in object-oriented languages:

o for object-oriented languages with inheritance, the base class
must be visited before the derived class in order to determine if
declarations in the derived class are correct

@ in addition, the signature of methods needs to be considered ()

@ qualify a function symbol with its parameters
@ may also require type checking

Declarations of Function Names
An analogous mechanism is need for (recursive) functions:
@ in case a recursive function merely calls itself, it is sufficient to

add the name of a function to the symbol table before visiting its
body; example:

int fac(int i) {
return ixfac(i-1);
1
@ for mutually recursive functions all function names at that level
have to be entered (or declared as forward declaration). Example

ML and C:
-~ int even(int x);
odd 0 = false int odd(int x) {
T return (x==0 ? 0
odd 1 = true (x==1 2 1 : even(x-1)));
odd x = even (x-1) } ==l = : ;
@; even N0 = true int even(int x) |
even 1 = false
even x = odd (x-1) return (x==0 7 1
— (x==1 72 0 : odd(x-1)));

52/59

Overloading of Names

The problem of using names before their declarations are visited is
also common in object-oriented languages:

@ for object-oriented languages with inheritance, the base class
must be visited before the derived class in order to determine if
declarations in the derived class are correct

@ in addition, the signature of methods needs to be considered ()

e qualify a function symbol with its parameters
@ may also require type checking

Once the names are resolved, other semantic analyses can be
applied such as type checking or type inference.

53/59

Multiple Classes of Identifiers

Some programming languages distinguish between several classes

of identifiers:
. ogf/h a {
@ C:variable names and type names ik

i
e Java: classes, methods and fields vrd al) Ly
@ Haskell: type names, constructors vanagles infix variables and
-constructors
T (>< : XS)
Cons x XS

54/59

Multiple Classes of Identifiers

Some programming languages distinguish between several classes
of identifiers:

@ C:variable names and type names
@ Java: classes, methods and fields

@ Haskell: type names, constructors, variables, infix variables and
-constructors
In some cases a declaration may change the class of an identifier; for
example, a typedef in C:
@ the scanner generates a different token, based on the class into
which an identifier falls

@ the parser informs the scanner as soon as it sees a declaration
that changes the class of an identifier

@ the parser generates a syntax tree that depends on the semantic
interpretation of the input so far

54/59

Multiple Classes of Identifiers

Some programming languages distinguish between several classes
of identifiers:

@ C:variable names and type names
@ Java: classes, methods and fields

@ Haskell: type names, constructors, variables, infix variables and
-constructors

In some cases a declaration may change the class of an identifier; for
example, a typedef in C:

@ the scanner generates a different token, based on the class into
which an identifier falls

@ the parser informs the scanner as soon as it sees a declaration
that changes the class of an identifier

@ the parser generates a syntax tree that depends on the semantic
interpretation of the input so far

the interaction between scanner and parser is problematic!

54/59

Fixity-Declarations in Haskell &2
Haskell allows for arbitrary binary operators over [7 1~ \7+7 x/)F
In Standard Library of Haskell:

infixr 8 RDP,. \;)‘\/ \5_
infixl 7 =,/

infixl 6 4, - Chpa C3¥ (f)

infix 1 -/ o, 71 T

Loh Z—OP(,

The grammar is generic:

E.\‘p‘q = @70 LO!’O @Jl
Expy ROpo £,_\;p0
Exp; Opg Expy
Exp,

Expg LOpg Exp
Exp ROpg Expg
Exp Opg Exp
Exp

ident | num
(Expo)

Expg

Exp

55/59

Fixity-Declarations in Haskell

Haskell allows for arbitrary binary operators over (2! ~& |=+—_x/)T.
In Standard Library of Haskell:

infixr 8 *

infixl 7 «,/ @ parser enters an infix
infixl 6 +, - declaration into a table
infix 4 ==,/= | @ scanner checks table and
_ ' produces:
The grammar is generic: o operator — turns into
Expg u= Expg LOpg Exp token LOps.
| Exp1 ROpo Expg e operafor_+ turns into
| Expy Opg Expy token LOp;.
| Exp e operafor == turns into
. token Op;.
: e etc. T
Expg = Expy LOpy Exp @ ~ parser recognizes
| Exp ROpg Expg 14456 as i
| Exp Opg Exp (3— (4%5)) 6 / \L
| Exp pR— an
Exp == ident|num 7N
| (Eo) 3 A
APo ¢ -

55/59

Fixity-Declarations in Haskell: Observations

Troublesome changes:

@ the scanner has a sfate which the parser determines
~+ grammar no longer confexi-free, needs global data structure

@ a code fragment may have several semantics
@ syntactic correctness may depend on imported modules

56/59

Fixity-Declarations in Haskell: Observations

Troublesome changes:

@ the scanner has a state which the parser determines
~» grammar no longer context-free, needs global data structure

56/59

Fixity-Declarations in Haskell: Observations

Troublesome changes:

@ the scanner has a sfate which the parser determines
~+ grammar no longer context-free, needs global data structure

@ a code fragment may have several semantics
@ syntactic correctness may depend on imported modules
@ error messages difficult to understand

The GHC Haskell Compiler parses all operators as L.Op, and
transforms the AST afterwards. -

56/59

Type Synonyms and Variables in C Type Synonyms and Variables in C

The C grammar distinguishes typedef-name and identifier. The C grammar distinguishes typedef-name and identifier.
Consider the following declarations: s Consider the following declarations: b
typedef struct { int %,y } point_t; — typedef struct { int x,v } p(nnt_fi‘; l /{Mﬁ:—v
point_t origin; point_t origiln; —=
— ﬁ
Relevant C grammar: Relevant C grammar:
declaration — (declaration-specifien@deolarator ; declaration — (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile ... typedef declaration-specifier — static|volatile-.- typedef
| void]| char |char ... typedef-name | wvoid| char | char ... typedef-name
declarator — identifier|--- declarator — identifier|---
Problem:
@ parser adds point_t to the table of types when the declaration
is reduced
57/59 57/59
Type Synonyms and Variables in C Type Synonyms and Variables in C
The C grammar distinguishes typedef-name and identifier. The C grammar distinguishes typedef-name and identifier.
Consider the following declarations: Consider the following declarations:
typedef struct { int x,y } polnt_t; typedef struct { int x,y } point_t;
int_t igin; int_t igin;
point_t origin polint_t origin
Relevant C grammar: Relevant C grammar:
declaration — (declaration-specifier)* declarator ; declaration — (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile--- typedef declaration-specifier — static|volatile--- typedef
| void| char | char --- typedef-name | void| char | char --- typedef-name
declarator — identifier|--- declarator — identifier|---
Problem: Problem:
@ parser adds point_t to the table of types when the declaration @ parser adds point_t to the table of types when the declaration
is reduced is reduced
@ parser state has at least one look-ahead token @ parser state has at least one look-ahead token
e e e —— e s——

@ the scanner has already read point_t in line two as identifier

57/59 57/59

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier)* declarator ;
declaration-specifier — static|volatile--- typedef

| void]| char |char ... typedef-name
declarator — identifier|.--

Solution is difficult:
@ try to fix the look-ahead inside the parser

Type Synonyms and Variables in C: Solutions

Relevant C grammar:

declaration — (declaration-specifier)* declarator
declaration-specifier — static|volatile ... typedef

| void| char | char --- typedef-name
it &SN

declarator — identifier|---

Solution is difficult: d‘

@ try to fix the look-ahead inside the parser

@ add the following rule to the grammar:
typedef-name — identifier

@ register type name earlier

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile--- typedef

| void|char |char --- typedef-name
declarator — identifier|...

Solution is difficult:
@ try to fix the look-ahead inside the parser

@ add the following rule to the grammar:
typedef-name — identifier

Type Synonyms and Variables in C: Solutions

Relevant C grammar:

declaration — (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile--- typedef

——— | void| char | char --- typedef-name
declarator — identifier|---

Solution is difficult:

@ try to fix the look-ahead inside the parser

@ add the following rule to the grammar:
typedef-name — identifier

@ register type name earlier

@ separate rule for typede f production

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier)* declarator ;
declaration-specifier — static|volatile--- typedef

| void]| char |char ... typedef-name
declarator — identifier|.--

Solution is difficult:
@ try to fix the look-ahead inside the parser

@ add the following rule to the grammar:
typedef-name — identifier

@ register type name earlier

@ separate rule for typedef production
o call alternative declarator production that registers identifier
as type name ==

Outlook

@ seminar: implement symbol tables for C
@ lecture: check types of programs

59/59

symtables.pdf - Adobe Reader

types.pdf - Adobe Reader

o
IE3

File Edit View Document Tools Window Help

B (€ o 0)ad © e oo

B sookmarks

TECHNISCHE UNIVERSITAT MUNCHEN
FAKULTAT FUR INFORMATIK

h >
=¥ semantic Analysis
] Type Checking

Compiler Construction |

Dr. Michael Petter, Dr. Axel Simon

SoSe 2013

Goal of Type Checking

In most mainstream (imperative / object oriented / functional)
programming languages, variables and functions have a fixed type.
for example: int, void*, struct { int x; int y; }.

Goal of Type Checking Goal of Type Checking

In most mainstream (imperative / object oriented / functional)
programming languages, variables and functions have a fixed type.
for example: int, voids, struct { int x; int y; }.

In most mainstream (imperative / object oriented / functional)
programming languages, variables and functions have a fixed type.
for example: int, voidx, struet { int x; int y; }.

Types are useful to Types are useful to

@ manage memory

@ manage memory
@ to avoid certain run-time errors

@ to avoid certain run-time errors
In imperative and object-oriented programming languages a
declaration has to specify a type. The compiler then checks for a type
correct use of the declared entity. -

Type Expressions

Types are given using type-expressions.
The set of type expressions I contains:

@ base types: }_rlt,glz_ar, float, void, ...
@ type constructors that can be applied to other types

Type Definitions in C

A type definition is a_synonym for a type expression.
In C they are introduced using the typedef keyword.
Type definitions are useful

@ as abbreviation:

typedef struct { int x; int y; } point_t;

@ to construct recursive types:

Possible declaration in C: more readable:
struct list { typedef struct list list_t;
int info; struct list {
struct list* next; int info;
} list_t+* next;
}
struct listx head; list_t« head;

—— S

10/34

Type Expressions

Types are given using type-expressions.
The set of type expressions T' contains:

@ base types: int, char, float, void, ...
@ type constructors that can be applied to other types
example for type constructors in C:

@ records: struct { 7y ap;.. . h oag;) {,{ & T
@ pointer: 1 « - + e T
@ arrays: [] - P
—_— ok 2_|x
e the size of an array can be specified & E ‘]l
e the variable to be declared is written between 7 and [n]
e functions: 7 (1,.... 1) +, % eT

e the variable to be declared is written between r and (7, . . ., 1)
@ in I’_/I_Efunction types are written as: # ... % — 1

@ : W‘)&,‘% ¢

(€ 54) 4
Type Checking
b 1
Problem: \, \L
Given: a set of type declarations ' = {#; xy;... 1 X }

Check: Can an expression ¢ be tf:;-i\Fen the type ?

11/34

Type Checking

Problem:

Given: asetof type declarations I' = {7} xy;.. .1y Xm: }
Check: Can an expression e be given the type ?

Example:

struct list { int info; struct list+ next; };
int f(smct listx 1) { return 1; };

struct {_struct lists cj}+ b;

int«+ 3[11]; -

Consider the expression:

*al[f(b->c)]14+2;

11/34

Type Checking using the Syntax Tree

Check the expression «a [f (b—>c)] +2:

ldea:

@ ftraverse the syntax tree bottom-up
@ for each identifier, we lookup its type in I"_
@ constants such as20r0.5 have a fixed type

@ the types of the inner nodes of the tree are deduced using typing
dihttadit b bt A 1sing yping

rules
ha—

[kT

12/34

Type Systems

Formal consider judgements of the form:

I'kFe : 1t
—— T

// (in the type environment I the expression ¢ has type 1)

Axioms: M= 7: ut
Const: T' Fe¢: 1, (1. type of constant ¢)
Var: Fx o Tx) (x Variable)
ndi—
Regeln:
) I'kFe : t A
Rel T 7 Derel: T e 71

e aall o

Type Systems for C-like Languages

More rules for typi Tttt e % T3
ore rules for typing an expression: s “Helle*[3] L

. ' e @ 1% I' ey : int .
Array. I Ft’][(’g] :_L_
. ' Fer I I' Fey : int
Array. I F(’][(’g] I
Struct: I'Fe: srtr:ict {:I alzf...f,,, s }
e.di - i
) I'Fe: o, ty) I'be - ... I'bey iy
App: T 1 eler,. o) - L
=W
. I Fe : int ' Fey @ int
Op: T Feiter: int
Cast: I'kFe: 1 1 can be converted to 1,
' I' + (f:) e : I
ﬁ"-=='

14/ 34

Example: Type Checking

int f(struct list+ 1);

Given expression *a [f (b->c)]+2 andL: {
struct list ([dint dinfn: struet lighupoxi. Lo
B Me & (Y

struct { struct lists c;}»* .}3;

int* al[lll; -

: i
Chaet A >

[N A4 &Luﬂgjak‘}

U e 1)
fyy L ik (bt L8 [eps,

Mo b L [Eelbsd ik

Ay (M o[{(h3e)] : imt x

Example: Type Checking

Expression xa[£f (b->c)]+2:

int «
" 0 m
Int (struct ist ») D struct list
struct {struct list x c;}

struct {structlist = ¢} =

16/34

LT el 42] « it T ook
Or r_'f-%a[}(lr*«'c):l{'?_ . int
Equality of Types

Summary type checking:

@ Choosing which rule to apply at an AST node is determined by

the type of the child nodes

@ -~ determining the rule requires a check for equality of types
Ining qui 2qualily ortyp

type equality in C:
@ struct A {} and struct B {} are considered to be different
R, o

@ - the compiler could re-order the fields of 2 and B independently
(notallowed in C) == -

@ to extend an record & with more fields, it has to be embedded into
another record: — - =

typedef struct B {
struct A a;

int fie afoffB;

} exterision_oI

@ afterissuing typedef int C; the types Cc and int are the
same -

17/34

