7688 TECHNISCHE UNIVERSITAT MUNCHEN m
8881 FAKULTAT FUR INFORMATIK

Script generated by TTT

Compiler Construction |

Title: Petter: Compilerbau (11.04.2016)

Dr. Michael Petter
Date: Mon Apr 11 14:23:19 CEST 2016

Duration: 92:37 min

Pages: 44 SoSe 2016
Organizing Organizing
@ Master or Bachelor in the 6th Semester with 5 ECTS Dates:

@ Prerequisites

Informatik 1 & 2

o | Theoretische Informatik
@ |Technische Informatik |

|Lecture: Mo 14:15-15:45 |
Tutorial: Mo 16:00-18:00 and Tue 14:00-16:00 in Ml 02.07.014

o Grundlegende Algorithmen Exam:
@ Delve _deeper Wi_th @ One Exam in the summer, none in the winter
® Virtual Machines @ Exam managed via TUM-online/campus 4“&%
e Programmoptimization @ Successful mini project earns 0.3 bonus
e Programming Languages
o Praktikum Compilerbau Mini Projects:
e Seminars C . .
Materials: @ A practical implementation, based on a compiler fragment
_ @ Implement a subcomponent:
o| TTT-based lecture recordings o Type system (memory model)
®| The slides e Typecasts
o [Related literature list online (= Wilhelm/Seid/Hack Compiler Design) _| @ Type verification
@ Tools for visualization of virtual machines (VAM) e Additional Language Features (ellipsis, enums, unions)
o Code generation for Raspberry Pi/ARM

® Tools for generating components of Compilers (JFlex/CUP)

Preliminary content

@ Regular expressions and finite automata

@ Specification and implementation of scanners

@ [Reduced context free grammars and pushdown automata |
@ Top-Down/Bottom-Up syntaxanalysis

4

@ AITbUtESystEms
o| Typechecking |
@ [Codegeneration [for register machines
@ Register assignment
@ Optional: Basic optimization

Interpreter

Program

L Interpreter J Output
Input

Pro:

No precomputation on program text necessary
no/small Startup-time

Con:

Program components are analyzed multiple times during execution
> longer runtime

Topic:

Introduction

Concept of a Compiler

Program [Compiler Code
Code ; A
[Machine Output
Input
Two Phases:

@ Translating the program text into a machine code
© Executing the machine code on the input

Compiler Compiler

general Compiler setup:

A precomputation on the program allows p q
@ a more|sophisticated variable management rogram code
@ discovery and implementation jof global optimizations 117
Disadvantage S Analysis '®)
The Translation costs time 3 S
g nt. Representatior 5.
Advantage &) Synthesis @
The execution of the program becomes more efficient
> payoff for more sophisticated or multiply running programs. T
Code

Compiler Compiler

general Compiler setup:
The Analysis-Phase consists of several subcomponents:

Program code
| | Program code

]
|

Analysis

nt. Representation

Compiler
Jadwon

Synthesis

Analysis

Compiler Compiler

The Analysis-Phase consists of several subcomponents: The Analysis-Phase consists of several subcomponents:

Program code

Program code
Scanner lexicographic Analysis: Scanner lexicographic Analysis:
Partitioning in tokens Partitioning in tokens
w Token-Stream <) Token-Stream
w 2]
) = Parser syntactic Analysis:
g g Detecting hierarchical structure
< < Syntax tree
Compiler

The Analysis-Phase consists of several subcomponents:

Topic:

Program code

Lexical Analysis

lexicographic Analysis:

Scanner
Partitioning in tokens

w Token-Stream
[2]
= Parser syntactic Analysis:
g Detecting hierarchical structure
< Syntax tree
Type semantic Analysis:
Checker... Infering semantic properties

(annotated) Syntax tree

The Lexical Analysis

Program code — > Scanner | > Token-Stream

The Lexical Analysis

L 6 ¢

Xyz + 42 —> Scanner —J-—

@ A Token is a sequence of characters, which together form a unit.
@ Tokens are subsumed in classes. For example:
— Names (ldentifiers) e.g. xyz, pi, ...
— Constantse.g. 42,3.14, "abc”, ...
—— h——
— QOperatorse.g. -, ...
— Reservedterms e.g. (i£{int, ...

The Lexical Analysis

Xyz + 42 —

Scanner H-

The Lexical Analysis

Classified tokens allow for further pre-processing:

@ Dropping irrelevant fragments e.g. Spacing, Comments,...

@ Collecting Pragmas, i.e. directives for the compiler, which are not
directly part of the source language, like OpenMP-Statements;

@ Replacing of Tokens of particular classes with their meaning /
internal representation, e.g.

— | Constants;

— | Names: |typically managed centrally in a Symbol-table,
maybe compared to reserved terms (if not already done by

the scanner) and |

ossibly replaced

vith an index or

internal format (=

Name Mangling).

= Siever

The Lexical Analysis

Discussion:

@ Scanner and Siever are often combined into a single component,
mostly by providing appropriate callback actions in the event that
the scanner detects a token.

@ Scanners are mostly not written manually, but generated from a
specification.

Specification Generator Scanner

The Lexical Analysis - Generating:

... in our case:

01 [1-9][0-9]* Generator

Specification of Token-classes:' Reaqular expressions: |
Generated Implementation: [

The Lexical Analysis - Generating:

.. in our case:

Specification Generator Scanner

Regular Expressions

Basics
@ Program code is composed from g finite alphabet % | of input
characters, e.g. Unicode
@ The sets of textfragments of a token class is in general regular.

@ Regular languages can be specified by regular expressions.

Regular Expressions

Basics

@ Program code is composed from a finite alphabet X of input
characters, e.g. Unicode

@ The sets of textfragments of a token class is in general regular.
@ Regular languages can be specified by regular expressions.

Definition Regular Expressions

The set &y of (non-empty) regular expressions)
is the smallest set &€ with: DN

® =€ & | (e anew symbol not from %);
@pecf| foral aecX;

@ [(e1 |ea)|[er-ea)lpr™ €& |if |e1,e0 €E

Regular Expressions

... Example:

((a b")a)

(a]|b)

((a-b)-(a-b))
Attention:
@ We distinguish between characters «. 0, $,... and Meta-symbols
(i]y)5mee
@ To avoid (ugly) parantheses, we make use of
Operator-Precedences:

>

“on

and omit

Regular Expressions

... Example:

L]
—

((a-b)(a b))

Regular Expressions

... Example:

((a-b")a)
(a|b)
((a-b)-(a-b))
Attention:
@ We distinguish between characters «, 0, §,... and Meta-symbols
(3]s)pene
@ To avoid (ugly) parantheses, we make use of
Operator-Precedences:
|

W

and omit
@ Real Specification-languages offer additional constructs:

[

1Tl
NIE
m

W 1

and omit “e

Regular Expressions

Specification needs Semantics

...Example:
Specification Semantics
abab {abab}
alb {a,b}
ab*a {ab"a | n = 0}

For e e & wedefine the specified language [e] € =*
inductively by:
[€]

[o]
[e”}]

[e1les]
[[(—.31‘(-32]] =

Il
Sl Y L.y
o o=

Regular Expressions

Specification needs Semantics

...Example:

Specification Semantics

abab {abab}
alb {a,b}
ab*a {ab™a | n > 0}

For ee&s wedefine the specified language [¢] € =*
inductively by:

[] = {g
[= {a}
] = (CIf
[erea] = [edjUfes]
[[63] >-‘32]] = Ifflﬂ . [[632]

Keep in Mind:

@ The operators (_)*|U)- are interpreted in the context of sets

of words:

(L)~ = {w...wrlk>0.w; €L}
Li-La| = {_u.=1u.-‘2 ‘ w1 € Laljwe € LQ}

Keep in Mind:

@ The operators (_)*,U,- are interpreted in the context of sets

of words:

(L)~ {wy...wy |k >0,w; € L}
Ll - Lg = {H}l'u,-‘g ‘ wi € Ll, wo € Lg}

@ Regular expressions are internally represented as annotated

ranked trees:

(able)” =+

Inner nodes: Operator-applications;
Leaves: particular symbols or .

Regular Expressions

Example: Identifiers in Java:

le = [a—-zA-Z_\$)

di = [0-9]

td|= filet]q{ret | (din@

Regular Expressions

Example: Identifiers in Java:

le = [a-zA-7_\5]
di [0-9]
Id = {le} ({le} | {di})=*

Float = {dit=(\.{di}|{di}\.){di}~*

Remarks:

@ “le” and “di” are token classes.
@ Defined Names are enclosed in “{”, “}".
@ Symbols are distinguished from Meta-symbols via “\".

((elE) (\+|\-)7{di}+)?

Regular Expressions

2.7

Example: Identifiers in Java:

le [a—zA-7_\5]
di = [0-9]
Id = {le} ({le} | {di}) =

Float = {% (. aif {diT\T‘%*

Finite Automata

Example:

Nodes: States;
Edges: Transitions;
Lables: Consumed input;

((elE) (\+|\-)2{di}+)Y7

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton
(NFA) is a tuple A = (Q, X, 0, [, I) with:

G a finite set of states;

a finite alphabet of inputs;

1 C @ | the set of start states;

F C Q| the set of final states and

the set of transitions (-relation)

ol >
Michael Rabin Dana Scott

Finite Automata

@ Computations ard paths in the graph.
@ Accepting computations leadfrom I to F.

@ An accepted word is the sequence of lables along an accepting
computation ...

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton : » B
(NFA)is a tuple A = (Q. .4, I, F') with: Michaelsbin - Dana Seot

Q a finite set of states;

% a finite alphabet of inputs;

I C @) the set of start states;

F C @ the set of final states and

) the set of transitions (-relation)

For an NFA, we reckon:

Definition Deterministic Finite Automata

Given d : () x & — () a function and || = 1, then we call the NFA A
deterministic (DFA).

Finite Automata

Once again, more formally:
@ We define the transitive closure ¢* of § as the smallest set ¢’ with:

(pye,p) €0 and_—
(p,zw, g € o if (L)IIZ edland| [(p1|w,q) € d.

&* characterizes for two states p and ¢ the words, along each
path between them

@ The set of all accepting words, i.e. A's accepted language can
be described compactly as:

L(A)=qwe X |dfiel|f el u..u €d'}

Finite Automata

@ Computations are paths in the graph.

@ Accepting computations lead from [to F. Chapter 3:
@ An accepted word is the sequence of lables along an accepting
computation ... Converting Regular Expressions to NFAs

In Linear Time from Regular Expressions to NFAs Berry-Sethi Approach

. o0

O—0

Berry-Sethi Algorithm N/

Produces exactly n + 1 states without e-transitions ceradgery Raviseti
and demonstrates — Equality Systems and — Attribute Grammars

_'"Q :[O—'Ob O Idea:
' The automaton tracks (conceptionally via a marker “#”), in the syntax

tree of a regular expression, which subexpressions in ¢ are reachable
consuming the rest of input w.

Thompson’s Algorithm

Produces O(n) states for regular expressions of
length n.

Ken Thompson

Berry-Sethi Approach

Glushkov Algorithm

Produces exactly n + 1 states without e-transitions Vikior M. Glushiov
and demonstrates — Equality Systems and — Attribute Grammars

ldea:

The automaton tracks (conceptionally via a marker “¢”), in the syntax
tree of a regular expression, which subexpressions in ¢ are reachable
consuming the rest of input w.

