Script generated by TTT

Title: Petter: Compilerbau (26.04.2018)

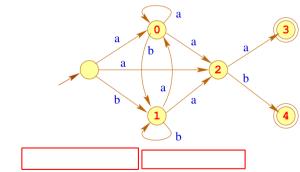
Date: Thu Apr 26 14:14:21 CEST 2018

Duration: 96:55 min

Pages: 38

Berry-Sethi Approach

... for example:



Remarks:

- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):

Create an automanton based on the syntax tree's new attributes:

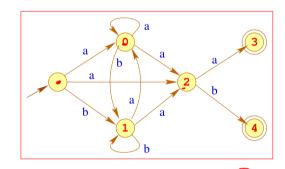
```
\begin{array}{lll} \text{States: } \{ \bullet e \} \cup \{ i \bullet \mid i \text{ a leaf} \} \\ \text{Start state: } \bullet e \\ \\ \text{Final states: } \underset{}{\mathsf{last}[e]} & \text{if } \mathsf{empty}[e] = f \\ & \{ \bullet e \} \cup \mathsf{last}[e] & \text{otherwise} \\ \\ \text{Transitions: } (\bullet e, a, i \bullet) & \text{if } i \in \mathsf{first}[e] \text{ and } i \text{ labled with } a. \\ & (i \bullet, a, i' \bullet) & \text{if } i' \in \mathsf{next}[i] \text{ and } i' \text{ labled with } a. \\ \end{array}
```

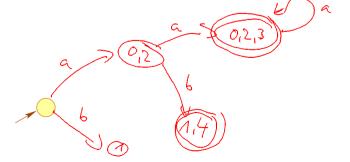
We call the resulting automaton A_e .

41/288

Powerset Construction

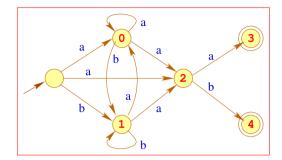
... for example:

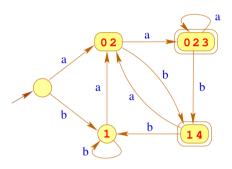




Powerset Construction

... for example:





45/288

Powerset Construction

Observation:

There are exponentially many powersets of Q

- Idea: Consider only contributing powersets. Starting with the set $Q_{\mathcal{P}} = \{I\}$ we only add further states by need ...
- ullet i.e., whenever we can reach them from a state in $Q_{\mathcal{P}}$
- However, the resulting automaton can become enormously huge
 ... which is (sort of) not happening in practice

Powerset Construction

Theorem:

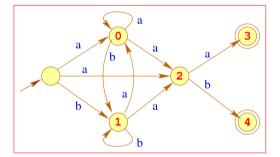
For every non-deterministic automaton $A=(Q,\Sigma,\delta,I,F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

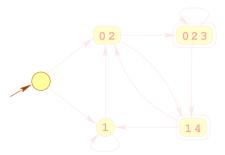
$$\mathcal{L}(\underline{A}) = \mathcal{L}(\mathcal{P}(\underline{A}))$$

46/288

Powerset Construction

... for example:





Remarks:

- \bullet For an input sequence of length $\ n$, maximally $\ \mathcal{O}(n)$ sets are generated
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Remarks:

- \bullet For an input sequence of length $\quad n \quad$, maximally $\quad \mathcal{O}(n) \quad \text{sets} \quad \text{are generated} \quad$
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Summary:

Theorem:

For each regular expression e we can compute a deterministic automaton $A=\mathcal{P}(A_e)$ with

$$\mathcal{L}(A) = \llbracket e \rrbracket$$

49/288

48 / 288

49/288

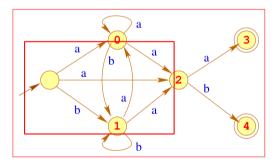
50/288

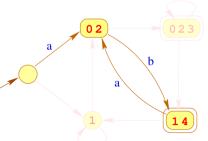
Lexical Analysis

Chapter 5: Scanner design

Powerset Construction

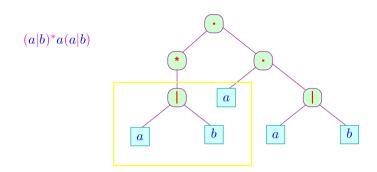
... for example:





Berry-Sethi Approach

... for example:



28/288

Berry-Sethi Approach

In general:

- Input is only consumed at the leaves.
- ullet Navigating the tree does not consume input $o \epsilon$ -transitions
- For a formal construction we need identifiers for states.
- For a node n's identifier we take the subexpression, corresponding to the subtree dominated by n.
- There are possibly identical subexpressions in one regular expression.

we enumerate the leaves ...

29/288

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):

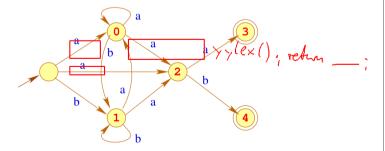
Create an automanton based on the syntax tree's new attributes:

```
\begin{array}{ll} \text{States: } \{ \bullet e \} \cup \{ i \bullet \mid i \text{ a leaf} \} \\ \text{Start state: } \bullet e \\ \\ \text{Final states: } \underset{}{\text{last}[e]} & \text{if } \operatorname{empty}[e] = f \\ & \{ \bullet e \} \cup \operatorname{last}[e] & \text{otherwise} \\ \\ \text{Transitions: } (\bullet e, a, i \bullet) & \text{if } i \in \operatorname{first}[e] \text{ and } i \text{ labled with } a. \\ & (i \bullet, a, i' \bullet) & \text{if } i' \in \operatorname{next}[i] \text{ and } i' \text{ labled with } a. \\ \end{array}
```

We call the resulting automaton A_e .

Berry-Sethi Approach

... for example:



Remarks:

- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...

Implementation:

Idea:

- Create the DFA $\mathcal{P}(A_e) = (Q, \Sigma, \delta, q_0, F)$ for the expression $e = (e_1 \mid \ldots \mid e_k)$;
- Define the sets:

$$F_{1} = \{q \in F \mid q \cap \overline{|\operatorname{last}[e_{1}]|} \neq \emptyset\}$$

$$F_{2} = \{q \in (F \setminus F_{1}) \mid q \cap \overline{|\operatorname{last}[e_{2}]|} \neq \emptyset\}$$

$$\vdots$$

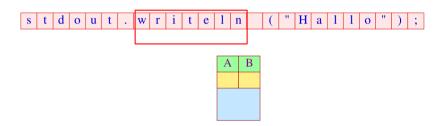
$$F_{k} = \{q \in (F \setminus (F_{1} \cup \ldots \cup F_{k-1})) \mid q \cap \overline{|\operatorname{last}[e_{k}]|} \neq \emptyset\}$$

• For input w we find: $\delta^*(q_0, w) \in F_i$ iff the scanner must execute $action_i$ for w

Implementation:

Idea (cont'd):

- The scanner manages two pointers $\langle A, B \rangle$ and the related states $\langle q_A, q_B \rangle$...
- Pointer A points to the last position in the input, after which a state $q_A \in F$ was reached;
- Pointer *B* tracks the current position.



53/288

Extension: States

- Now and then, it is handy to differentiate between particular scanner states.
- In different states, we want to recognize different token classes with different precedences.
- Depending on the consumed input, the scanner state can be changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ignored

Input (generalized): a set of rules:

- The statement yybegin (state_i); resets the current state to state_i.
- The start state is called (e.g.flex JFlex) YYINITIAL.

... for example:

55/288

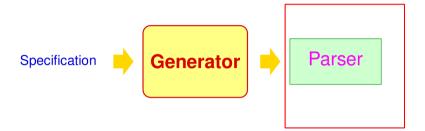
52/288

Remarks:

- "." matches all characters different from "\n"
- For every state we generate the scanner respectively.
- Method yybegin (STATE); switches between different scanners.
- Comments might be directly implemented as (admittedly overly complex) token-class.
- Scanner-states are especially handy for implementing preprocessors, expanding special fragments in regular programs.

Discussion:

In general, parsers are not developed by hand, but generated from a specification:



60/288

62/288

57/288

61/288

Syntactic Analysis

Chapter 1:

Basics of Contextfree Grammars

Basics: Context-free Grammars

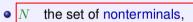
- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- ullet This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Definition: Context-Free Grammar

A context-free grammar (CFG) is a 4-tuple G = (N, T, P, S) with:



 \bullet T the set of terminals,

P the set of productions or rules, and

• $S \in N$ the start symbol

62/288

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

63/288

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$\begin{array}{ccc} S & \to & a \, S \, b \\ S & \to & \epsilon \end{array}$$

Specified language: $\{a^nb^n \mid n \ge 0\}$

Conventions:

In examples, we specify nonterminals and terminals in general implicitely:

- ullet nonterminals are: $A,B,C,...,\langle \exp \rangle, \langle \operatorname{stmt} \rangle,...;$
- terminals are: a, b, c, ..., int, name, ...;

... a practical example:

... a practical example:

More conventions:

- For every nonterminal, we collect the right hand sides of rules and list them together.
- The j-th rule for A can be identified via the pair (A, j) (with $j \ge 0$).

Pair of grammars:

E	\rightarrow	E+E	E*E	(E)	name	int
E	\rightarrow	E+T	T			
T	\rightarrow	T*F	F			
F	\rightarrow	(E)	name	int		

Both grammars describe the same language

65/288

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Definition

The <u>derivation</u> relation \rightarrow is a relation on words over $N \cup T$, with

$$\overbrace{\alpha} \rightarrow \overbrace{\alpha'}) \ \ \text{iff} \quad \alpha = \alpha_1 \overbrace{A} \alpha_2 \quad \wedge \quad \alpha' = \alpha_1 \overbrace{\beta} \alpha_2 \quad \text{for an } A \rightarrow \beta \in P$$

Derivation

Remarks:

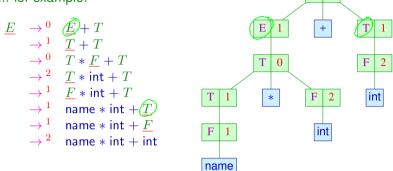
- ullet The relation ullet depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{w \in T^* \mid S \to^* w\}$$

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example:



A derivation tree for $A \in N$:

 $\begin{array}{c} \text{inner nodes: rule applications} \\ \text{root: rule application for} \quad A \end{array}$

leaves: terminals or ϵ

The successors of (B, i) correspond to right hand sides of the rule

68/288

Special Derivations

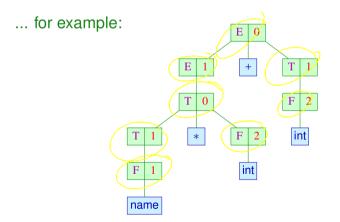
Attention:

In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or rather rightmost) occurance of a nonterminal.

- These are called leftmost (or rather rightmost) derivations and are denoted with the index L (or R respectively).
- Leftmost (or rightmost) derivations correspondt to a left-to-right (or right-to-left) preorder-DFS-traversal of the derivation tree.
- Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of the derivation tree

69/288

Special Derivations

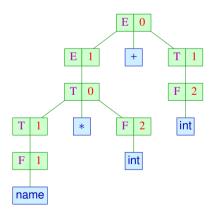


00000000

Unique Grammars

The concatenation of leaves of a derivation tree $\ t$ are often called $\mathrm{yield}(t)$.

... for example:



gives rise to the concatenation:

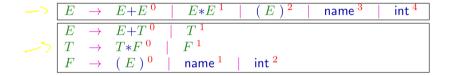
name * int + int.

Unique Grammars

Definition:

Grammar G is called unique, if for every $w \in T^*$ there is maximally one derivation tree t of S with yield(t) = w.

... in our example:



The first one is ambiguous, the second one is unique

72/288

Syntactic Analysis

Chapter 2:

Basics of Pushdown Automata

Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.