Script generated by TTT

Title: Petter: Compilerbau (26.04.2018)
Date: Thu Apr 26 14:14:21 CEST 2018
Duration: 96:55 min

Pages: 38

Berry-Sethi Approach

... for example:
TN
A,
| |
Remarks:

@ This construction is known as Berry-Sethi- or

Glushkov-construction.
@ It is used for XML to define Content NModels

@ The result may not be, what we had in mind...

42/288

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):
Create an automanton based on the syntax tree’s new attributes:

States: {ee} U {ie | i aleaf}
Start state: ec

Final states: last[e] if empty[e] = f
{ec} U lastle] otherwise

Transitions: (ee,a,ie) if i € first[e] and i labled with a.
(ie,a,i'e) ifi' € next[i] and i’ labled with a.

We call the resulting automaton A..

Powerset Construction

... for example:

41/288

45/288

Powerset Construction

... for example:

45/288

Powerset Construction

Observation:

There are exponentially many powersets of @ J

@ Idea: Consider only contributing powersets. Starting with the set
Qp = {I} we only add further states by need

@ i.e., whenever we can reach them from a state in Qp

@ However, the resulting automaton can become enormously huge
... which is (sort of) not happening in practice

47/288

Powerset Construction

Theorem:

For every non-deterministic automaton

A=(Q,%,0,1,F)wecan

compute a deterministic automaton P(A4) with
L(A) = L(P(A))
I e IR e,

Powerset Construction

46/288

... for example: !

B
T

48/288

Remarks:

@ Foraninput sequence of length n , maximally O(n) sets

are generated

@ Once a set/edge of the DFA is generated, they are stored within
a hash-table.

@ Before generating a new transition, we check this table for
already existing edges with the desired label.

49/288

Chapter 5:
Scanner design

50/288

Remarks:

@ For an input sequence of length »n , maximally O(n) sets
are generated

@ Once a set/edge of the DFA is generated, they are stored within
a hash-table.

@ Before generating a new transition, we check this table for
already existing edges with the desired label.

Summary:

Theorem:

For each regular expression e
automaton A =P(A.) with

we can compute a deterministic

L(A) = [e]

Powerset Construction

Sl :
... for example: p M\ /©
alblalb] | |l

49/288

48/288

Berry-Sethi Approach

.. for example:

(alb)*a(alb)

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):

Create an automanton based on the syntax tree’s new attributes:

States: {ec} U {ie | i aleaf}
Start state: ec

Final states: last[e] if empty[e] = f
{ec} Ulastle] otherwise

Transitions: (ee,a,ie) if i € first[e] and ¢ labled with a.
(ie,a,i'e) ifi' € next[i] and i’ labled with a.

We call the resulting automaton A..

28/288

41/288

Berry-Sethi Approach

In general:

@ Input is only consumed at the leaves.
@ Navigating the tree does not consume input — e-transitions
@ For a formal construction we need identifiers for states.

@ For a node n’s identifier we take the subexpression,
corresponding to the subtree dominated by n.

@ There are possibly identical subexpressions in one regular
expression.

— we enumerate the leaves ...

Berry-Sethi Approach

.. for example:

€><[
N //’ \@
Remarks:

@ This construction is known as Berry-Sethi- or
Glushkov-construction.

@ ltis used for XML to define Content Models

@ The result may not be, what we had in mind...

29/288

42/288

Implementation:

|dea:

@ Createthe DFA P(A.) = (Q,%,5,q0, F) for the expression
e=(e1|...|er);
@ Define the sets:

o= {q€F|qr{Iast[ei’:£O)
F, = {q€ (F\Fy)|qn|last[eg] # 0}
Fo = {g€ (F\(FLU...UF, 1)) | qnlast[ex] # 0}

@ Forinput w we find: 0" (qo, w) € F; iff the scanner

must execute action; for w

52/288

Extension: States

@ Now and then, it is handy to differentiate between particular
scanner states.

@ In different states, we want to recognize different token classes
with different precedences.

@ Depending on the consumed input, the scanner state can be
changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ignored

55/288

Implementation:

|dea (cont'd):
@ The scanner manages two pointers (A, B) and the related states
(94.9B)---
@ Pointer A points to the last position in the input, after which a
state ¢4 € ' was reached;

@ Pointer B tracks the current position.

)

[==]t]1]e

ll|)

[slt[dfofuft[[w|r[i[t[e[l]n

A | B

53/288

a set of rules:

{ action; statei); }

Input (generalized):

(state) { e

es { actiony; yybegin(statesy);}
ek { action; yybegin(state;);}
}
@ The statement yybegin (state;); resets the current state

to state;.
@ The start state is called (e.g.flex JFlex) YYINITIAL.

... for example:

(YYINITIAL) "/« { yybegin(COMMENT); }
(COMMENT) { "=/ 1 { yybegin(YYINITIAL); }

3 [RERIE
}J

56/288

Remarks: Discussion:

In general, parsers are not developed by hand, but generated from a
specification:

@ “.” maitches all characters different from “\n”.
@ For every state we generate the scanner respectively.
@ Method vyybegin (STATE); switches between different

scanners. Specification Generator Parser
@ Comments might be directly implemented as (admittedly overly
complex) token-class.
@ Scanner-states are especially handy for implementing
preprocessors, expanding special fragments in regular programs.

57/288 60/288

N

Basics: Context-free Grammars

@ Programs of programming languages can have arbitrary
numbers of tokens, but only finitely many Token-classes.

@ This is why we choose the set of Token-classes to be the finite
alphabet of terminals T.
Ch apter 1: @ The nested structure of program components can be described
elegantly via contexi-free grammars...

Basics of Contextfree Grammars

61/288 62/288

Basics: Context-free Grammars

@ Programs of programming languages can have arbitrary
numbers of tokens, but only finitely many Token-classes.

@ This is why we choose the set of Token-classes to be the finite
alphabet of terminals 7.

@ The nested structure of program components can be described
elegantly via contexi-free grammars...

Definition: Context-Free Grammar

A context-free grammar (CFG) is a
4-tuple G = (N, T, P, S) with:

o|N the set of nonterminals, |

John Backus

Noam Chomsky

o|T the set of terminals, |

@ [P the set of productions or rules, and
@ |S e N the start symbol |

62/288

Conventions

The rules of context-free grammars take the following form:

A—a wth AeN, ae (NUT)"

... for example:
S — aSb
S — €
Specified language: {a"b"™ | n > 0}

Conventions:
In examples, we specify nonterminals and terminals in general
implicitely:
@ nonterminals are:
@ terminals are:

A, B,C, ..., (exp), (stmt), ...;

a,b,c,....int,name, ...;

63/288

Conventions

The rules of context-free grammars take the following form:

A—a with AeN, ae(NUT)*

... a practical example:

S — (stmt)

(stmt) — (if) | (while) | (rexp);

(if) — if ((rexp)) {stmt) else (stmt)

{while) — while ((rexp)) (stmt)

(rexp) — | int || |(Iexp>| | [{lexp) = (rexp) | | [... |

lexp) — name|\

63/288

64/288

... a practical example:

S — (stmt)

(stmty — (ify) | (while) | (rexp);

(if) — if ((rexp)) (stmt) else {stmt)
(while) — while ((rexp)) (stmt)

(rexp) — int | (lexp) | (lexp) = (rexp) |
(lexp) — name |

More conventions:

@ For every nonterminal, we collect the right hand sides of rules
and list them together.

@ The j-thrulefor A can be identified via the pair
(with j > 0).

(4,5)

64/288

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ap — ... — am
is called derivation.

E+T

Tr+7T
TxF+T
T*xint+ T
Fxint+ T
name * int + 7’
name * int + F’
name * int + int

... forexample: E

U A

Definition
The derivation relation — is a relation on words over N U T, with

e——
@—)@ iff a:al@ag A a':oq@ag fora@)

66/288

Pair of grammars:

|E — E+E | ExE | (E) | name int
E —- E+T | T

T — T+«F | F

F — (E) | name | int

Both grammars describe the same language

Derivation

Remarks:

@ The relation| — |depends on the grammar

@ In each step of a derivation, we may choose:

x a spot, determining where we will rewrite.

x arule, determining how we will rewrite.

@ The language, specified by G is:

() =[we])

65/288

67/288

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example: 2
B 0 G+ Er B o

o

—
-1 T+T
=0 TxF4+T Tlo Fl2
s [F|2]
— T xint+ 1T
=1 Fxint+T T[1 % F|2 int
—1 name*int+@ E D :‘
— 1 name % int + F .
. = F|1 int
— 2 pame % int + int [j D

A derivation tree for A € N:
inner nodes: rule applications
root; rule application for A
leaves: terminals or e
The successors of (B,i) correspond to right hand sides of the rule

68/288

Special Derivations

... for example:

[+]
= 5
s

70/288

Special Derivations

Attention:

In contrast to arbitrary derivations, we find special ones, always
rewriting the leftmos: (or rather rightmost) occurance of a
nonterminal.

@ These are called leftmost (or rather rightmost) derivations and
are denoted with the index L (or R respectively).

@ Leftmost (or rightmost) derivations correspondt to a left-to-right
(or right-to-left) preorder-DFS-traversal of the derivation tree.

@ Reverse rightmost derivations correspond to a left-to-right
postorder-DF S-traversal of the derivation tree

69/288

Unique Grammars

The concatenation of leaves of a derivation tree ¢ are often called
yield(t) .

... for example:

gives rise to the concatenation: name x int + int.

71/288

Unique Grammars

Definition:
Grammar G s called unique, if forevery w € T* thereis
maximally one derivationtree ¢ of S with yield(t) = w.
... inour example:
|E — E+E" | ExE' | (E)? | name?® | int?
E — E4T° | T?
T — TxFY | F!
Fo— (E)° | name! | int?

The first one is ambiguous, the second one is unique

72288

Chapter 2:
Basics of Pushdown Automata

74288

Conclusion:

@ A derivation tree represents a possible hierarchical structure of a
word.

@ For programming languages, only those grammars with a unique
structure are of interest.

@ Derivation trees are one-to-one corresponding with leftmost
derivations as well as (reverse) rightmost derivations.

73/288

