Syntactic Analysis

Script generated by TTT

Title: Petter: Compilerbau (03.05.2018)

Thu May 03 14:15:07 CEST 2018 Date:

85:26 min Duration:

Pages: 17

Example:

States: 0, 1, 2Start state: 0 Final states: 0, 2

0	a	11
1	a	11
11	b	2
12	b	2

Conventions:

- We do not differentiate between pushdown symbols and states
- The rightmost / upper pushdown symbol represents the state
- Every transition consumes / modifies the upper part of the pushdown

Chapter 2: Basics of Pushdown Automata

74/288

Definition: Pushdown Automaton

A pushdown automaton (PDA) is a tuple

 $M = (Q, T, \delta, q_0, F)$ with:

- T an input alphabet;
- $q_0 \in Q$ the start state;
- $F \subseteq Q$ the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$ a finite set of transitions

... for example:

States: 0, 1, 2Start state: 0Final states: 0, 2

0	a	11
1	a	11
11	b	2
12	b	2

78 / 288

Definition: Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions (γ_1, x, γ_2) , $(\gamma_1', x', \gamma_2') \in \delta$ we can assume: Is γ_1 a suffix of γ_1' , then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

80/288

Pushdown Automata

Theorem:

For each context free grammar G=(N,T,P,S) M. Schützenber a pushdown automaton M with $\mathcal{L}(G)=\mathcal{L}(M)$ can be built.

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- M_G^L to build Leftmost derivations
- ullet M_G^R to build reverse Rightmost derivations

Syntactic Analysis

Chapter 3:

Top-down Parsing

Item Pushdown Automaton – Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

84/288

Item Pushdown Automaton - Example

We add another rule $S' \to S$ for initialising the construction:

Transition relations:

$[S' \rightarrow \bullet S \$]$	ϵ $[S' \rightarrow \bullet S \$] [S \rightarrow \bullet A E$	3]
$[S \to \bullet AB]$	$\epsilon \mid [S \to \bullet \ A B] [A \to \bullet \ a]$	
[A ightarrow a]	$a \mid A \rightarrow a \bullet $	
$[S \to \bullet \ A \ B] [A \to a \bullet]$	$\epsilon \mid [S \rightarrow A \bullet B]$	
$[S \rightarrow A \bullet B]$	$\epsilon \mid [S \to A \bullet B][B \to \bullet b]$	
[B o ullet b]	$b \mid B \rightarrow b \bullet $	
$[S \rightarrow A \bullet B] [B \rightarrow b \bullet]$	$\epsilon [S \rightarrow AB \bullet]$	
$[S' \to \bullet \ S \ \$] [S \to A B \bullet]$	$\epsilon \mid [S' \to S \bullet \$]$	

85/288

Item Pushdown Automaton

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions: $([A \rightarrow \alpha \bullet B \ \beta], \epsilon, [A \rightarrow \alpha \bullet B \ \beta] \ [B \rightarrow \bullet \ \gamma])$ for

 $A \to \alpha B \beta, B \to \gamma \in P$

Shifts: $([A \to \alpha \bullet a \beta], a, [A \to \alpha a \bullet \beta]) \quad \text{for} \quad A \to \alpha a \beta \in P$

Reduces: $(A \to \alpha BBBB \to \gamma \bullet) \epsilon, (A \to \alpha BBB)$ for $A \to \alpha BBBB \to \gamma \bullet \epsilon$

 $A \to \alpha B \beta, B \to \gamma \in P$

Items of the form: $[A \to \alpha ullet]$ are also called complete The item pushdown automaton shifts the bullet around the derivation tree ...

Item Pushdown Automaton

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- ullet For proving correctness of the construction, we show that for every Item [A
 ightharpoonup lpha ullet B eta] the following holds:

$$([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon)$$
 iff $B \to^* w$

• LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

86/288

Item Pushdown Automaton

Example: $S' \rightarrow S \$$ $S \rightarrow \epsilon \mid aSb$

The transitions of the according Item Pushdown Automaton:

0	[S' o ullet S \$]	ϵ	$[S' \to \bullet S \$] [S \to \bullet]$
_	$S' o ullet S \$	ϵ	$[S' \to \bullet S \$] [S \to \bullet a S b]$
2	$[S \to \bullet \ a \ S \ b]$	a	$[S \rightarrow a \bullet S b]$
3	[S ightarrow a ullet S b]	ϵ	$[S \to a \bullet S b] [S \to \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet a S b]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \to a \bullet S b] [S \to a S b \bullet]$	ϵ	$[S \to a \ S \bullet b]$
7	$[S \to a S \bullet b]$	b	$[S \rightarrow a \ S \ b \bullet]$
8	$[S' \to \bullet S \$] [S \to \bullet]$	ϵ	$[S' \rightarrow S \bullet \$]$
9	$[S' \to \bullet S \$] [S \to a S b \bullet]$	ϵ	$[S' \rightarrow S \bullet \$]$

Structure of the LL(1)-Parser:

- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table M[q, w] contains the rule of choice.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

89/288

Topdown Parsing

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1), Philip Lewis Rich if for each two distinct rules $A \to \alpha$, $A \to \alpha' \in P$ and each derivation $S \to_L^* uA\beta$ with $u \in T^*$ the following is valid:

$$\mathsf{First}_1(\alpha\,\beta)\,\cap\,\mathsf{First}_1(\alpha'\,\beta)=\emptyset$$

90/288

88/288

Topdown Parsing

Example 1:

Lookahead Sets

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{\epsilon \mid \epsilon \in L\} \cup \{u \in T \mid \exists \, v \in T^* \, : \ uv \in L\}$$

Example: $S \rightarrow \epsilon \mid aSb$

92/288

93/288