Script generated by TTT

Title: Petter: Compilerbau (27.06.2019)
Date: Thu Jun 27 14:12:42 CEST 2019
Duration: 91:56 min

Pages: 42

Regular Expressions: Kleene-Star and ‘?’

E— FEx empty[0] = ¢
first[0] = first[1]
next[l] := first[1] U next[0]
E—E? empty[0] = ¢
first[0] = first[1]
next[1] = next[0]
D(E—Fx) :
D(E—E?):
f| |e f [e
f |e @ (e @

D(E—E?) ={ (first[1], first[0]

D(E—Ex) ={ (next[0], next[1])

(first[1], first]0]),
(first[1], next[2]),

(next[0], next[1])}

),
}

180/287

Regular Expressions: Kleene-Star and *?°

E— Ex empty[0] = t
first[0] = first[1]
next[l] := first[1] U next[0]
E—E? empty[0] = ¢
first[0] = first[1]
next[l] := next[0]
D(E—Ex)
D(E—E?):
f[e f [e
f |e @ i e @

D(E—E?)={ (first[1], first]0]),

D(E—E=%) ={ (next[0], next[1])}

(first[1], first[0]),
(first[1], next[2]),
(next|0], next[1])}

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

180/287

J

@ an evaluation strategy can only exist, if for any derivation tree the
dependencies between attributes are acyclic

@ itis DEXPTIME-complete to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

181/287

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

@ an evaluation strategy can only exist, if for any derivation tree the
dependencies between attributes are acyclic

@ itis DEXPTIME-complete to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

ldeas
@ Let the User specify the strategy
@ Determine the strategy dynamically
@ Automate subclasses only

Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator L[i] re-decorates relations from L
L[i] = {(ald]. b[i]) | (a,b) € L}
7 projects only onto relations between root elements only
m0(8) = {(a, b) | (a[0], b[0]) € S}
[.]%... root-projects the transitive closure of relations from the L;s and D
[pl* (L1s- -, L) = mo((D(p) U L1 [1]U ... U Ly [k]))
R maps symbols to relations (global attributes dependencies)

R(X) D Hpﬂ: R(X1) ...|R(ij)

R(X) 20

p:X|l—= X1...XxDT |pepP

| Xe(NUT)

181/287

183/287

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals X compute a set R(X) of relations
between its attributes, as an overapproximation of the global
dependencies between root attributes of every production for X.

Describe| R (X)s as sets of relations, similar tg D(p)|by

@ setting up each production X — X3 ... X}’s effect on the
relations of R(X)

@ compute effect on all so far accumulated evaluations of each rhs
XS R(X,)

@ iterate until stable

182/287

Subclass: Strongly Acyclic Attribute Dependencies
The 2-ary operator L[] re-decorates relations from L
L[] = {(alé], b[]) | (a,b) € L}
7o projects only onto relations between root elements only
70(8) = {(a,0) | (a[0], b[0]) € S}
[.]%. .. root-projects the transitive closure of relations from the ;s and D

[p]* (L1, ..., L) = ma((D(p) U L1[1]U ... U Ly [K])T)

R maps symbols to relations (global attributes dependencies)
R(X) 2 (P (R(X1), - R(X) | p: X = X X DY [pe P
R(X)D9 |Xe(NUT)
Strongly Acyclic Grammars
The system of inequalities R (X)
@ characterizes the class of strongly acyclic Dependencies
@ has a unique least solution R*(X) [.1%

183/287

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars

Ifall D(p) UR*(X1)[1]U...UR*(X)[k| are acyclic for all p € G,
G is strongly acyclic.

|dea: we compute the least solution R*(X) of R(X) by a fixpoint
computation, starting from R (X) = 0.

Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator L[i] re-decorates relations from L
L[i] = {(ald]. b[i]) | (a,b) € L}
7 projects only onto relations between root elements only
m0(8) = {(a, b) | (a[0], b[0]) € S}
[.]%... root-projects the transitive closure of relations from the L;s and D
[pl* (L1, -, Ly) = mo((D(p) UL1[1]U ... U L[k ™)
R maps symbols to relations (global attributes dependencies)

RO 2 (U (R(XD), - R(Xa)) [p: X = Xy Xe) [pe P

R(X)20 | Xe(NUT)
Strongly Acyclic Grammars
The system of inequalities R (X)

@ characterizes the class of strongly acyclic Dependencies

@ has a unique least solution R*(X) (as [.]*

184/287

183/287

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars

If all D(p) UR*(X1)[1]U...UR*(X)|k| are acyclic for all p € G,
G is strongly acyclic.

ldea: we compute the least solution R*(X) of [R(X) by a fixpoint

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars

| Ifall D(p) UR*(X1)[1]U... UR* (X,)k] pre acyclic forall p € G,
G is strongly acyclic.

184/287

ldea: we compute the least solution R*(X) of R(X) by a fixpoint
computation, starting from R (X) = 0.

184/287

Example: Strong Acyclic Test

Start with computing| R(L)|= [L—a]*([L][Z—b]*():

hi

@ terminal symbols do not contribute dependencies

@ transitive closure of all relations in (D(L—a))* and (D(L—b))"
@ apply 7o

Q R(L) ={(k,]), (i,n)}

Example: Strong Acyclic Test

Continue with R(S) = [S—L]*(R(L)):
P
' (s) [i]

@ re-decorate and embed R(L)[1]

@ transitive closure of all relations
(D(S—L) U (R[], (1)} u {1, pADH*
Q apply 7

186/287

187/287

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars

If all D(p) UR*(X1)[1]U...UR*(X)|k| are acyclic for all p € G,
G is strongly acyclic.

ldeq|
com

e compute the least solution R*(X) ofJR (X) by a fixpoint
tion, starting from R (X)) = 0.

184/287

Example: Strong Acyclic Test

Continue with R(S) = [S—L]*(R(L)):

h (s) [j]

@ re-decorate and embed R(L)[1]

@ transitive closure of all relations
(D(S—L) U{(k[], j[1)} u{G[], pAD})*T
Q apply 7

187/287

Strong Acyclic and Acyclic

The grammar S— L, L—a | b has only two derivation trees which are

both acyclic:
h @ h @
h i h i
b a

It is not strongly acyclic since the over-approximated global
dependence graph for the non-terminal L contributes to a cycle when

computing R(S):
@ 1]

h !
h i

Strong Acyclic and Acyclic

The grammar S—L, L—a | b has only two derivation trees which are

both acyclic:
h @
I
h i

a

It is not strongly acyclic since the over-approximated global
dependence graph for the non-terminal L. contributes to a cycle when

computing R(S):

ol
|
hi

188/287

188/287

Example: Strong Acyclic Test

Given grammar S—L, L—a | b. Dependency graphs D,,:
h i @
!
" T
oEs o
a b

Linear Order from Dependency Partial Order

Possible automatic strategies:

@ demand-driven evaluation
e start with the evaluation of any required attribute
e if the equation for this attribute relies on as-of-yet unevaluated
attributes, evaluate these recursively

© evaluation in passes
for each pass, pre-compute a global strategy to visit the nodes together
with a local strategy for evaluation within each node type

~» minimize the number of visits to each node

185/287

190/287

Example: Demand-Driven Evaluation

Compute next at leaves a,, as and b, in the expression (a|b)*a(a|b):

|] : next[1]

next[2]

[-] = next[1]

next[2]

next[0]
next[0]

first[2] U (empty[2] ? next[0]: @)

[N

mext|0]

Example: Demand-Driven Evaluation

Compute next at leaves a,, a; and b, in the expression (a|b)*a(a|b):

|] : next[1]

next[2]

[-] = next[1]

next[2]

et [0]]

next[0]

first[2] U (empty[2] ? next[0]: @)
next[0]

191/287

191/287

Demand-Driven Evaluation

Observations

@ each node must contain a pointer to its parent
@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary
~+ the algorithm is not local

192/287

Demand-Driven Evaluation

Observations

@ each node| must contain a pointer to its parent

@ (only required fattributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary
~+ the algorithm is not local

in principle:
@ evaluation strategy is dynamic: difficult to debug
@ usually all attributes in all nodes are required
~» computation of all attributes is often cheaper

192/287

Implementing State

Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

L-Attributation

pre

@ the attribute system is apparently strongly acyclic

193/287

195/287

Example: Implementing Numbering of Leafs

Idea:
@ use helper attributes pre and post
@ in pre we pass the value for the first leaf down (inherited attribute)
@ in post we pass the value of the last leaf up (synthesized

attribute)
root: |pre[0] = 0 |
pre[l] = pre[0] |
postl0] := post[l] |
node: [pre[l]| := |pre[0]
[prel2]| := [post[l]
| post[0] := [post[2]]
leaf: | post[0]| := | pre[0] +1

194/287

L-Attributation

@ the attribute system is apparently strongly acyclic
@ each node computes
e the inherited attributes before descending into a child node
(corresponding to a pre-order traversal)
o the synthesized attributes after returning from a child node
(corresponding to post-order traversal)

Definition L-Attributed Grammars

An attribute system is L-attributed, if for all productions|S—S;S,
every inherited attribute of S; where 1 < j < x only depends on

@ the attributes of b, 5, ... 5, |and

@ the inherited attributes of|S]

195/287

L-Attributation

Background:

@ the attributes of an L-attributed grammar can be evaluated
during parsing

@ important if no syntax tree is required or if error messages
should be emitted while parsing

@ example: pocket calculator
L-attributed grammars have a fixed evaluation strategy:
a single depth-first traversal
@ in general: partition all attributes into A = A; U...U A,, such that
for all attributes in A; the attribute system is L-attributed
@ perform a depth-first traversal for each attribute set A;

~ craft attribute system in a way that they can be partitioned into few
L-attributed sets

196/287

Implementation of Attribute Systems via a Visitor
@ class with a method for every non-terminal in the grammar

public abstract class |Regex |{
public abstract void| accept (Visitor v) ;|

}
@ attribute-evaluation works via pre-order / post-order callbacks
public interface Visitor {

default wvoid pre (OrEx re) {}

default void pre (AndEx re) {}

default void post (OrEx re) {}
default void post (AndEx re) {}

}

@ we pre-define a depth-first traversal of the syntax tree
public class| OrEx extends Regex|{

Regex |_—1| ;

public void hccept(visitor v)|{
rv.pre(this);l.accept(vﬂ;p.lnter(thls);|
|r.accept(v); v.post (this) ;

bl

198/287

Practical Applications

@ symbol tables, type checking/inference, and simple code
generation can all be specified using L-attributed grammars

@ most applications annotate syntax trees with additional
information

@ the nodes in a syntax tree usually have different types that
depend on the non-terminal that the node represents

~ the different types of non-terminals are characterised by the set
of attributes with which they are decorated

Example: a statement may have two attributes containing valid identifiers:
one ingoing (inherited) set and one outgoing (synthesised) set; in contrast, an
expression only has an ingoing set

197/287

Example: Leaf Numbering

public abstract class AbstractVisitor
implements Visitor {

public void pre (OrEx re) { pr(re); }
public void pre (AndEx re) { pr(re); }
public void post (OrEx re) { pol(re); }
public void post (AndEx re){ po(re); }
abstract wvoid po (BinEx re);
abstract wvoid in (BinEx re);
abstract wvoid pr (BinEx re);

1

public class LeafNum extends AbstractVisitor {

public LeafNum(Regex r) {| n.put (r,0);r.accept (this);}
public Map<Regex, Integer> |n [new HashMap<> () ;

public void pr(Const r) {|n.put(r, n.get(x)+1l)j }
public void pr (BinEx r) {|n.put(r.l,n.get(xr)); }
public void in (BinEx r) { |n.put(r.r,n.get(r.Ll)}|; }
public void po (BinEx r) {|n.put(r,n.get(r.r));| }

199/287

Chapter 2:
Decl-Use Analysis

Resolving Identifiers

Observation: each identifier in the AST must be translated into a
memory access

Problem: for each identifier, find out what memory needs to be
accessed by providing rapid access to its declaration

Idea:

@ rapid access: replace every identifier by a unique integer
— integers as keys: comparisons of integers is faster
@ link each usage of a variable to the declaration of that variable

— for languages without explicit declarations, create declarations
when a variable is first encountered

200/287

203/287

Symbol Tables

Consider the following Java code:
void foo

@ within the body of the loop, the

:-,;zle ltrue) { definition. O'f'A is shadowed by the
doublg, (22 local definition
E}="0.5; @ each declaration of a variable v
write [Bl requires allocating memory for v

break; @ accessing v requires finding the

declaration the access is boundto

@ a binding is not visible when a
local declaration of the same
name is in scope

bar () ;

write ;

}

Rapid Access: Replace Strings with Integers

|dea for Algorithm:
Input: a sequence of strings
Output: @ sequence of numbers
@ table that allows to retrieve the string that
corresponds to a number
Apply this algorithm on each identifier during scanning.

Implementation approach:
@ count the number of new-found identifiers in int count
@ maintain a hashtable S : String — int to remember numbers
for known identifiers

We thus define the function:

int indexForldentifier(String w) {
if (S (w) = undefined) {
S =85&{w+ count};
eturn count+-;
} else jreturn S (w);

}

201/287

204/287

Implementation: Hashtables for Strings

@ allocate an array M of sufficient size m
@ choose a hash function H : String — [0, m — 1] with:

e H(w) is cheap to compute
e H distributes the occurring words equally over [0, m — 1]

Possible generic choices for sequence types (7 = (g, ... 2,_1)):

z
Hi(Z) = |z wi-p') %m
= @Fp-(@+p- . +p-zp1---))%m
for some prime number p (e.g. 31)

X The hash value of w may not be unique!

— Append (w, 1) to a linked list located at M [H (w)]
e Finding the index for w, we compare w with all = for which
H(w) = H(x)
v/ access on average:
insert: O(1)
lookup: O(1)

Refer Uses to Declarations: Symbol Tables

Check for the correct usage of variables:
@ Traverse the syntax tree in a suitable sequence, such that

@ each declaration is visited before its use
e the currently visible declaration is the last one visited

~+ perfect for an L-attributed grammar
e equation system for basic block must add and remove identifiers
@ for each identifier,(we manage a stack of declarations |
@ if we visit a declaration, we push it onto the stack of its identifier
@ upon leaving the scope, we remove it from the stack
@ if we visit a usage of an identifier, we pick the top-most
declaration from its stack
@ if the stack of the identifier is empty, we have found an
undeclared identifier

205/287

207/287

Example: Replacing Strings with Integers

Input:
| Peter | Piper | picked | a | peck | of | pickled | peppers

If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |

Output:
(0f1[2]3[4[5]6[7]8 01 2[3]4[5]6
7]9]10]4]5]6[7[0][1]2]
and .
Hashtable with m = 7 and H:
; i?;g[6 | pickled o -TTs}{teTio
1
2 piCked ; ﬁeppers 5 || pickled [g] [peck[4] | picked [2]
3| a 9 wheres 3 [of [5] | wheres [9] [peppers [7]
4 | peck 10 | the 4
5 | of 5] Piper [1] [Peter Jo] [a [3]
6

206/287

Example: A Table of Stacks

// Abstract locations 1n comments 0]a Iz
L (]
{ 2]¢c
int a, b; // V, W
b = 5;
if (b>3) {
int a, ¢; // X, Y 0fa El
a = 3; 1 w
c =a + 1; 21c
b = c; Lgi
} else {
int c; /) Z 0] a vV
c =a + 1; 1 W
: b = c; 21 ¢ 7
b =a + b; 01 a %
) 116 11:%
21c

208/287

Decl-Use Analysis: Annotating the Syntax Tree

d declaration node 1
b basic block :
4
a assignment :
7
8

209/287

Type Definitions in C

A type definition is a synonym for a type expression.
In C they are introduced using the typedef keyword.
Type definitions are useful

@ as abbreviation:
typedef struct { int x; int y; } point_t;
@ to construct recursive types:

Possible declaration in C: more readable:

typedef struct list list_t;
struct list {

int info;

list_t* next;

struct list {

int info;

struct list+ next;
} }
struct listx head; list_t+ head;

211/287

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

:
[]

0 a o

5 b 5

in front of if-statement

then-branch else-branch

@ instead of lists of symbols, it is possible to use a list of hash
tables ~» more efficient in large, shallow programs

@ an even more elegant solution: persistent trees

~- a persistent tree t can be passed down into a basic block where
new elements may be added, yielding a ¢'; after examining the
basic block, the analysis proceeds with the unchanged old ¢

210/287

