Script generated by TTT

Title: Petter: Compilerbau (18.07.2019)

Date: Thu Jul 18 14:15:56 CEST 2019

Duration: 75:45 min

Pages: 25

Example: Translation of Loops

Let p = {a | 7]b— 8, ¢+ 0} and let s be the statement:

|while (a>0) {|
c =cMHEI1;
a = al[|b;

]

/x (3) %/
/(i) =/
/x (idd) +/

Then code? s p evaluates to:

(1)
move 1, R~

loadc ;11 0
gr Ry R Riy

(734)
Ty

move [?; Rg
loadc R;+1 1

move R; R~

move Ri+ 1 Rg

add R; R; Ritq sub |Ri R; Rijq
move | g |R; move Ry R;
jump A

265/287

lterating Statements

We only consider the loop s = while (¢) s'. For this statement we

define:
code’ while(e) s p = A: codek ep code fore |-
]ump; ki B jumpz [2
code’ s p
jump A code for s
B : Jjump ®
[N N J f-—
The switch-Statement
ldea:
@ Suppose choosing from multiple options in constant time if
possible
@ use a| jump table that, at the ith position, holds a jump to th
alternafive

@ in order to realize this idea, we need an indirect jump instruction

By = A

S _C R

PC PC
PC=A+RZ‘;

264/287

267/287

Consecutive Alternatives Translation of the check! Macro
Let switch s be given with k consecutive case alternatives:

switch (¢) { The macro check® | u B checks if | < R; < u. Letk =u— L.
case (0: sg; break; @ ifl< R, <wuitjumpsto B+ R; —1
: @ if Ry <lorR; >witjumps to A
case k—1: s,_1; break; we define:

default: s;; break;

} ﬁ Z. Vg < / check! lu B = loadc R; 1
4 - { = < geq Riyo R Rigy o
Define code’ s p as follows: / jumpz R, » B jump Ag
code’sp = codek ep L sub R; Rt Riv1 : L =
. Jump AO loadc Ri+l u . 4
geq Riy2 Ry Ria >]ump Ak
: I - jumpz R; > D j&’,
jump C Tamp A, [E] ToatvRrul
. jumpi R; B
: ¢y [P} jump
7Ak codet s, p
Q jump C
268/287 269/287
Translation of the check! Macro Improvements for Jump Tables

The macro check’ l w B checks if | < R; < u. Letk =u— L.
0 ifil<R;<uitjumpsto B+ R; —1
@ if R, <lorR;>uitjumpsto A
we define:
. ‘Q This translation is only suitable for certain swit ch-statement.
check*lu B = cRiql

@ In case the table starts with 0 instead of JfrWe don’t need to

geq fiya 1y Riyy subtract it from e before we use it as index

jumpz R0 E B: jump Ag . - . .
: non)) @ if the value of ¢ is guaranteed to be in the interval [I, u], we can
sub Rz Rz Rz+l . . i

loade R; 1 u ' omit check

geq Rivo Ri Rita Jump Ay

jumpz R; o D C:

FE: loadc R; u—1
D: jumpi R; B

Note: a jump jumpi R; B with R; = u winds up at B + u, the default
case

269/287 270/287

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of i £-statements

@ for n cases, an if-cascade (iree of conditionals) can be
generated ~ O(logn) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

@ an if cascade can be re-arranged by using information from
profiling, so that paths executed more frequently require fewer
tests

Ingredients of a Function

The definition of a function consists of
@ a name with which it can be called;
@ a specification of its|formal parameters;
@ possibly ajresult type;
@ a sequence of| statements.

In C we have:

codel, fp = loade R; _f with_f starting address of f

Observe:
@ function names must have an address assigned to them

@ since the size of functions is unknown before they are translated,
the addresses of forward-declared functions must be inserted
later

271/287

273/287

Chapter 4
Functions

272/287

Memory Management in Functions

int main (void) {
int n;
n = fac(2) + fac(l);
printf ("%d", n);

int fac(int x) {
if (x<=0) return 1;
else return x»fac(x—1);

} }

At run-time several instances may be active, that is, the function has
been called but has not yet returned.
The recursion tree in the example:

main

I
fac fac printf
| |
fac fac

fac

274/287

Memory Management in Function Variables

The formal parameters and the local variables of the various
instances of a function must be kept separate

Idea for implementing functions:

@ set up a region of memory each time it is called

@ in sequential programs this memory region can be allocated on
the stack

@ thus, each instance of a function has its own region on the stack
@ these regions are called stack frames

Memory Management in Function Variables

The formal parameters and the local variables of the various
instances of a function must be kept separate

Idea for implementing functions:

@ set up a region of memory each time it is called

@ in sequential programs this memory region can be allocated on
the stack

@ thus, each instance of a function has its own region on the stack
@ these regions are called stack frames

275/287

275/287

Memory Management in Functions

int main (void) {
int n;
n = fac(2) + fac(l);
printf ("%d", n);

}

int fac(int x) {
if (x<=0) return 1;
else return xxfac(x—-1);

}

At run-time several instances may be active, that is, the function has
been called but has not yet returned.
The recursion tree in the example:

main
fac fac printf
fac fac

fac

Organization of a Stack Frame

@ stack representation: grows upwards
@ SP points to the last used stack cell

SP —»

local memory
callee

organizational

cells

PCold
FPold

274/287

276/287

Split of Obligations

Definition
Let f be the current function that calls a function g.

o fis dubbed caller |
@ g is dubbed callee |

The code for managing function calls has to be split between caller
and callee.

This split cannot be done arbitrarily since some information is only
known in that caller or only in the callee.

Observation:

The space requirement for parameters is only know by the caller:
Example: printf

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R;
@ parameters live in global registers R; (with i < 0)
@ global variables: let’'s suppose there are none
convention:
@ the ith argument of a function is passed in register 2 _;
@ the result of a function is stored in Ry
@ local registers are saved before calling a function

277/287

279/287

Principle of Function Call and Return
actions taken on entering g:

compute the start address of g
compute actual parameters in globals
backup of caller-save registers
backup of FP

set the new FP

back up of PC and

jump to the beginning of g

copy actual params to locals

STt W=

=

actions taken on leaving g:

1. compute the result into Ry
2. restore FP, SP
3. return to the call site in f,

that is, restore PC
4. restore the caller-save registers

Translation of Function Calls

codel™ e; p

codef;r e, p

move R,l Ri+1

move R_,, Ry,

saveloc Ry R;_1

mark
ball R

saveloc
mark arein f
call

7
.. tising

are in g
return

restoreloc} isin f

278/287

restoreloc 171 17,1

280/287

Rescuing the FP

The instruction mark allocates stack space for the returnvalge and
the organizational cells and backs up FP.

FP FP -
mark I
SP =SP + 1;

Return from a Function

The instruction return relinquishes control of the current stack frame,
that is, it restores PC and FP.

PC PC [p |
FP p FP

return

281/287

PC = S[FP];
SP = FP-2;
FP = S[SP+1];

284 /287

Result of a Function

The global register set is also used to communicate the result value
of a function:

code’|returnelp = | codep ep
move [|R;

return
alternative without result value:

code’ return p = return

global registers are otherwise not used inside a function body:

@ advantage: at any point in the body another function can be
called without backing up global registers

@ disadvantage: on entering a function, all global registers must be
saved

283/287

()]

move R, R_, ()
code™ T g5 pf

return
Assumptions: '/3
@ the function has n parameters
@ the local variables are stored in registers Ry,... R,

@ the parameters of the function are in

@ /' is obtained by extending p with the bindings in decls and the
function parameters args

@ return is not always necessary
Are the move instructions always necessary?

Translation of Functions

The translation of a function is thus defined as follows:

codel t,. £(args){decls ss} p = |move Ry 3 R |

285/287

Translation of Whole Programs

A program P = Fi;... F, must have a single main function.

codet Pp =

_h:

_fu:

Assumptions:

@ p = () assuming that we have no global variables
@ py, contain the addresses the local variables

° P1€BP2=)\x.{ pa(z) itz € dom(p,)

loadc Ry _main
mark

call R,

halt

code! Fi p & py,

code! F, p® py,

p1(z) otherwise

286 /287

Translation of the fac-function

Consider:
int fac(int x) {
if (x<=0) then
return 1;

_A:
i=3
i=4

e
return [Eac)(x 1)

i=3

}
fac: move Ry R,
1=2 move Ry R

loadc R3 0
leq RQ RQ R‘g
jumpz Ry A
loadc R> 1
move [y Ro
return

jump _B

save param.
if (x<=0)

move Ry Ry
move fig Iy
loadc R; 1

sub Rf; Rq R4
‘move A, R |
loadc R3 _fac

saveloc [y L
mark
call Rs

xxfac (x—-1)
x-1

fac(x-1)

to else
return 1

) B:
code is dead

restoreloc Ry Ry |

move g Iy

mul RQ RQ Rg

return x~*..

287/287

