(GTEY Background)

Variety of domains for distributed applications

Script generated by TTT

collaborative information spaces, workflow management, telecooperation, autonomous agents

Development of computer technology

Internet computing

Title: Distributed_Applications (17.04.2012) Entefprise Computing

Date: Tue Apr 17 14:32:27 CEST 2012
Duration: 85:48 min

Pages: 23

v © Background)

Variety of domains for distributed applications

f_tllatabase collaborative information spaces, workflow management, telecooperation, autonomous agents
ile system

/ Development of computer technology
application 1 > Internet computing
_database Enterprise Computing
I3 file system
application 2 \ Gorer
< j services

close, direct coupling of application programs running on multiple, heterogeneous platforms in a
networked environment.

Enterprise computing systems

These systems must be completely integrated and very reliable, in particular

information consistency, even in case of partial system breakdown.
security and guaranteed privacy.

adequate system response times.

high tolerance in case of input and hardware/user errors (fault tolerance).

autonomy of the individual system components.

oL © OO

The follpwing factors contribute to the increasing importance of distributed systems: The term distributed system may be defined informally:
Decrease of processor and storage cost. 1. after Tanenbaum : a distributed system is a collection of independent computers which appears to the user

. . as a single computer.
High bandwidth networks

2. after Lamport : a distributed system is a system that stops you from getting any work done when a machine
Insufficient and often unpredictable response times of mainframe systems you've never heard of crashes.

Growing number of applications with complex information management and complex graphical user

nterfaces Definition: We define a distributed system as one in which hardware and software components located at

networked computers

Growing cooperation and usage of shared resources by geographically dispersed users; caused by the communicate and
globalization of markets and enterprises,

e.g. applying telecooperation (groupware, CSCW) and mobile communication to improve distributed coordinate their actions mainly by passing messages.

teamwork. B

Informal definition
Methods of distribution

In the following sections, we will focus on the latter three types of distribution, in particular on the processing
distribution.

oL © O

There are five fundamental methods of distribution: Distributed systems have a number of characteristics, among them are:
1. Hardware components. 1. Existence of multiple functional units (physical, logical), e.g. software services.
2. Load. 2. Distribution of physical and logical functional units.
3. Data. 3. Functional units break down independently.
4. Control, e.g. a distributed operating system. 4. Distributed component control: a distributed operating system controls, integrates and homogenizes the
5. Processing, e.g. distributed execution of an application. distributed functional units

5. Transparency : details irrelevant for the user (e.g. distribution of data across several computers) remains
hidden in order to reduce complexity.

6. Cooperative autonomy during the interaction among the physical and logical functional units = implies
concurrency during process execution.

Challenges of distributed systems oL © Examples for development frameworks o @

-~

The design of distributed systems poses a number of challenges There is a high motivation to use standardized development frameworks for the design and implementation of

Heterogeneity applies to networks, computer hardware, operating systems, programming languages and distributed applications.

implementations by different programmers. Sun Network File System (NFS) by SUN
Use of middleliare to provide a programming abstraction masking the heterogeneity of the underlying a distributed file system behaving like a centralized file system.
system.
Open Network Computing%ONC) by SUN
gyctiql\)ev;fa;e prc;ywdfs a uniform computational model for use by the programmers of servers and platform for distributed application design; it contains libraries for remote procedure call (RPC) and
istributed applcations. for external data representation (XDR) .
middieware examples are Corba , Java BMI . distributed applications in ODP (Open Distributed Processing) by 1SO
Openness requires standardized interfaces between the various resources. specification of the interfaces and the component behavior.
Scalability : adding new resources Lo the overall system. Common Object Request Broker Architecture (CORBA) by OMG

Security : for information resources. defines a common architecture model for heterogeneous environments based on the object-oriented

Privacy : protect user profile information. paradigm.

Java 2 Platform Enterprise Edition (J2EE) by Sun, e.g. RMI
component-based Java framework providing a simple, standardized platform for distributed
applications; runtime infrastructure and a set of Java API's.
@ framework of Microsoft
middleware platform especially for Microsoft environments
consists of a class library and a runtime environment
incorporates the distributed component object model (DCOM) @

¢ @

vo @

a set of cooperating, interacting functional units Definition: The term distributed application contains three aspects.
|'easons‘forldistl'ibutiqm parallelism during the execution, fault tolerance , and inherent distribution of The application A, whose the functionality is split into a set of cooperating, interacting components As | .., An ,
the application domain. n = IN, n = 1; each component has an internal state (data) and operations to manipulate the state.
Definition The components A; are autonomous entities which can be assigned to different machines F; .

Programmer's perspective The components A; exchange information via the network.

Interfaces help to establish well-defined interaction points between the components of a distributed
application.

Interfaces of a distributed application

Interface specification

Distributed application vs. parallel program

Distributed application V) Distributed application

a set of cooperating, interacting functional units a set of cooperating, interacting functional units
reasons for distribution: parallelism during the execution, fault tolerance , and inherent distribution of reasons for distribution: parallelism during the execution, fault tolerance , and inherent distribution of
the application domain. the application domain.
Definition Definition
Programmer's perspective Programmer's perspective
Interfaces help to establish well-defined interaction points between the components of a distributed Interfaces help to establish well-defined interaction peoints between the components of a distributed
application. application.
Interfaces of a distributed application Interfaces of a distributed application
Interface specification Interface specification
Distributed application vs. parallel program Distributed application vs. parallel program

) Distributed application vs. parallel program 2hes)
specifies component operations (names, functionality) and communication between components. Although distributed applications might look similar to parallel programs at first glance, there are still some

T } o . . differences.

required parameters (including their types).

distributed application parallel program
the results returned by the operation including arity and type.
granularity coarse fine

visible side-effects caused by the component execution, for example data entry into a database. data space private shared

effects of an operation on the results of subsequent operations. failure handling within the communication protocols not considered

constraints concerning the sequence of operations. Gener

% Gene

Introduction D) L@

Issues The process (a task) defines an execution environment that provides secured access to system resources such

)) as virtual memory and communication channels.
Issues of the following section

- o . - A process consists of a set of threads.
Motivation for distributed systems and distributed applications.

Basic terminology for distributed systems, e.g. terms like distributed applications , and interface .

Introduction to some influential historic distributed systems, such as NFS File system, Mach and Java 2 applications
Platform Enterprise Edition. |
Background server virtual memory network process
Key Characteristics of distributed Systems subsystems management server management
Distributed application
Influential distributed systems
microkemel e o
Generaed iy Targetear communication channels / memory objects

threads as distribution unit, i.e. only entire threads are assigned to different processors.

memory objects realize virtual storage units; shared utilization of memory objects by different processes is
based on "Copy-on-Write", i.e. the memory object is copied when write operation takes place.

Mach message exchange) Mach L@
Processes communicate through communication channels, called ports . [N Mach is an operating system developed at Carnegie-Mellon University. It is characterized through its small kernel,
called microkernel.
port 47
process 1 »@ process 2 Goals of Mach

send to port 47 L ' :
Major design goals were
A port is realized as a message queue to which multiple senders may send messages; there is only one

receiving process per queue. Emulation of Unix.

Ports are protected by capabilities. transparent extension to network operation.
Mach supports network communication through network servers.
portability.
process 1 port 67 process 2 Architecture
send fo ort 47 " Mach message exchange
port 47 send to Gener
port 135467 port 67
network send to network ™ network

sernver port 135467 server

Characteristics o Characteristics L)

File catalogs are exported (by server subsystems) and mounted (by the client machines). = Sun Client
Sun Client

local

local mount

local

local mount

remote
mount

remote

mount | mwsys | ‘ staff | T
‘ man | | sys | | staff | | sys | | usr | ‘ users | | usr |
[usr | [users | [usr | @ @
HP Server IBM Server
HP Server |BM Server Support of a mount service :

Support of a mount service : file vetc exports on NFS server lists names of local filesystem available for remote mounting.
file setc exports on NFS server lisls names of local filesystem available for remote mounting. mounting request by client with: remote host, directory pathname and local name with which it is to

be mounted.
mounting request by client with: remote host, directory pathname and local name with which it is to

be mounted. automounter : dynamically mounting of a remote directory whenever an 'empty’ mount point is

referenced by a client.
automounter : dynamically mounting of a remote directory whenever an ‘empty’ mount point is

referenced by a client. NFS supports access tlaﬂS%Q rency .

KMEQ riinnarks aannne frananaranm s s

NFS implementation oL @

NFS implementation is based on RPC calls between the involved operating systems. It can be configured to use network extension to Unix and other operating systems for distributed file management.
UDP or TCP.

Characteristics

client machine server machine NES implementation
client process [}g
system call .
Unix kernel Unix kernel
virtual file system virtual file system
local remote
Unix . Unix
file system NFS client _Nl_-'?s —H# NFSsever file system
| protocol [
v v

earlier version of NFS was a stateless file server, i.e. a server subsystem does not store state information
about its clients and their past operations.

of NFS is a stateful file server, i.e. a server subsystem supports locking and delegation of
actions to client to improve client-side caching.

