@ Distributed Applications - Verteilte Anwendungen (5)

Script generated by TTT * Prof. J. Schichter
- Lehrstuhl fiir Angewandte Informatik / Kooperative Systeme, Fakultét fir Informatik, TU Miinchen

: Boltzmannstr. 3, 85748 Garching

Email: |schlichter @in.tum.de|
Tel.: 089-289 18654

Title: Distributed_Applications (17.07.2012) URL: s/t £ intum.de/
Date: Tue Jul 17 14:44:18 CEST 2012 Querview

Introduction

Architecture of distributed systems
Duration: 60:44 min Remote Invocation (RPC/RMI)

Basic mechanisms for distributed applications
Pages: 34 Web Services

Design of distributed applications
Distributed file service
Distributed Shared Memory

Object-based Distributed Systems

Summary

Generated by Tavgerean

co @

co @

The (Object Management Group) was founded in 1989 by a number of companies to encourage the The architecture is also referred to as CORBA ("Common Object Request Broker Architecture”).
adoption of distributed object systems and to enable interoperability for heterogeneous environments

b)) o - : OMA is a possible middleware for object-oriented distributed applications.
(hardware, networks, operating systems and programming languages).

Object Management Architecture - OMA {7 _____ éepplication objects _ _ _ '
Object Request Brokers ORB .

Common object services
Inter-ORB protocol object request broker (ORB)
Distributed COM object bus

Integration of Corba/DCOM and Web Services |

object services common functionality
(system layer) (application layer)

.NET Framework

ORB supports the communication among the objects through a request/reply protocol.
ORB includes object localization, message delivery, method binding, parameter marshalling, and
synchronization of request and reply messages.

ORB itself does not execute methods. Rather, it mediates between application objects, service objects,
L and shared functionalities of the application layer ("application frameworks").

oo @

ORB supports the following general characteristics

1. static and dynamic invocation of object methods

sta%ic : method interface is determined at compilation time.
dynamic : method interface is determined at runtime.

. interfaces for higher programming language, e.g. C++, Smalltalk, Java.
. a self-descriptive system.

. location transparency.

. security checks, e.g. object authentication.

(o2& B~ I \o]

. polymorphic method invocation, i.e. the execution of the method depends on the specific object instance.
Difference between RPC and ORB

RPC calls a specific server function; data are separated.
ORB calls the method of a specific object.

7. hierarchical object naming.

co @

~

* ORB core (kernel): mediates requests between client and server objects; handles the network
communication within the distributed system.

operations to convert between remote object references and strings.
operations to provide argument lists for requests using dynamic invocation.

« Static invocation interface

at compile time, operations and parameters are determined.
an object class may have several different static interfaces.

* Dynamic invocation interface
Procedures and parameters are determined at runtime; the interface is identical for all ORB
nplementations, i.e. there is only one dynamic invocation interface.

* ORB interface
supports ORB service calls, e.g. conversion of object references to strings and vice versa; the
interface is determined by the ORB.

« Interface repository

stores at runtime the signatures of the available methods; the signatures are described by the IDL
notation; in case of the dynamic invocation interface a lookup within the interface repository is
performed.

* Object adapter: bridges the gap between Corba objects with IDL interfaces and the programming language
interfaces of the server class. v

. r ‘
client | \Iserver object \
T Ty
— o~
(_7 runtime
interface \rlepository/
reposito B v
N
T static dynamic
dynamic static ORB skeletons || | skeleton
interface interfaces interface object adapter ‘
‘ ORB kernel ‘

ORB components
Embedding in distributed Applications

Skeletons)

Skeleton classes are generated in the language of the server by the IDL compiler:

contains stubs for server object calls.

static : stubs for the static interfaces; they are generated along with the static stubs on the client side by
the IDL compiler; there may be several static skeletons.

dynamic : provides a runtime binding mechanism for servers that need to handle incoming method calls for
objects that do not have a static skeleton (generated by the IDL compiler).

Usually the ORB is embedded as a library function.
client machine server machine

client application object implementation

object static | dynamic

adapter | skeleton | skeleton ORB

interface

static | dynamic| ORB
interface | interface | interface

client ORB server ORB

local operating system local operating system

+ ORBIX by (former lona Technologies).

available as librédies: client and server library.

based on TCP/IP transport mechanism

+ the TAO system by |Doug Schmidt| is an implementation of the Corba model.

exists as a free platform and as a commercial product.

Dynamic invocation interface

Steps during a dynamic method call on the client's side:

o

Step 1: obtain the method description by extracting the respective information from the interface repository;

CORBA supplies two functions: lookup_name(), describe().

Step 2: create parameter list for the method call.
Step 3: create method call (request) using the function:

create_request(object-reference, method, argument-list)

Step 4: invoke the request through
RPC: invoke().

send/receive: send() and get_response().

Datagram (unidirectional): send().

:5: L ©

The following steps are required for generating static invocation interfaces:

Step 1: define the object class using IDL.

Step 2: run the IDL file through the Corba compliant language precompiler to generate the skeletons for the
implementation server classes.

Step 3: servgr code implementation, i.e. implementation of the methods described by the skeletons; the
generated skeleton is extended.

Step 4: compilation of the entire code of step 3; compilation generates at least 4 output files:

static invocation interfaces for the client (client stub).

static invocation interfaces for the server (server skeletons).
the object code implementing the server object classes.
interface descriptions for the interface repository.

Step 5: instantiate the server objects using the object adapter.

Step 6: register the instantiated objects with the runtime repository.

¢ @

A collection of system level services which can be utilized by the application objects; they are extending the ORB
functionality.

Life-cycle Service : defines operations for object creation, copying, migration and delstion.

Persistence Service : provides an interface for persistent object storage, e.g. in relational or object-oriented
databases.

Name Servicq : allows objects on the object bus to locate other objects by name; integrates existing network
directory services, e.g. OSF's DCE, LDAP or X.500.

Event Service : register the interest in specific events; producer and consumer of events need not know
each other.

Concurrency Control Service : provides a lock manager.
Transaction Service : supports 2-phase commit coordination for flat and nested transactions.

Relationship Service : supports the dynamic creation of relations between objects that know nothing of
each other; the service supports navigation along these links, as well as mechanisms for enforcing referential
integrity constraints.

Query Service : supports SQL operations for objects.

Embedding in distributed Applications Aaes) oo @

Usually the ORB is embedded as a library function. * ORB core (kernel): mediates requests between client and server objects; handles the network
client machine server machine communication within the distributed system.
client application object implementation operations to convert between remote object references and strings.
static |dynamic| ORB object | static |dynamic | oo operations to provide argument lists for requests using dynamic invocation.
interface | interface | interface adapter | skeleton | skeleton interface

« Static invocation interface

client ORB server ORB at compile time, operations and parameters are determined.

local operating system local operating system

an object class may have several different static interfaces.

+ Dynamic invocation interface
Procedures and parameters are determined at runtime; the interface is identical for all ORB
* ORBIX by (former lona Technologies). implementations, i.e. there is only one dynamic invocation interface.
available as librkies: client and server library. « ORB interface t

supports ORB service calls, e.g. conversion of object references to strings and vice versa; the
interface is determined by the ORB.

+ the TAO system by |Doug Schmidt| is an implementation of the Corba model. u v

* Interface repository

based on TCP/IP transport mechanism

exists as a free platform and as a commercial product.) . . .)
stores at runtime the signatures of the available methods; the signatures are described by the IDL

notation; in case of the dynamic invocation interface a lookup within the interface repository is
performed.

» Object adapter: bridges the gap between Corba objects with IDL interfaces and the programming language
interfaces of the server class. v

Object Request Brokers ORB M © o @
The ORB connects distributed objects dynamically at runtime and supports the invocation of distributed service A collection of system level services which can be utilized by the application objects; they are extending the ORB
objects. functionality.

General features Life-cycle Service : defines operations for object creation, copying, migration and delstion.

Structure of ORB Persistence Service : provides an interface for persistent object storage, e.g. in relational or object-oriented

Static invocation interface databases.

Name Seivice : allows objects on the object bus to locate other objects by name; integrates existing network
directory services, e.g. OSF's DCE, LDAP or X.500.

Event Service : register the interest in specific events; producer and consumer of events need not know
each other.

Dynamic invocation interface

Concurrency Control Service : provides a lock manager.
Transaction Service : supports 2-phase commit coordination for flat and nested transactions.

Relationship Service : supports the dynamic creation of relations between objects that know nothing of
each other; the service supports navigation along these links, as well as mechanisms for enforcing referential
integrity constraints.

Query Service : supports SQL operations for objects.

Object-based Distributed Systems) External data representation o \% (5)

(Object Management Group) was founded in 1989 by a number of companies to encourage the Distinction between primitive and complex data types, so-called typeCodes; assignment of integer values to
adoption of distributed object systems and to enable interoperability for heterogeneous environments identify data types
(hardware, networks, operating systems and programming languages).

primitive : char, octet, short, long, float, double, boolean
Object Management Architecture - OMA

Object Request Brokers ORB complex : struct, union, sequence, symbol chains, fields

Common object services The format of complex data types is described in the interface repository.
Inter-ORB protocol Example

Distributed COM tk_struct (Typecode struct):

Integration of Corba/DCOM and Web Services string : repository_ID

.NET Framework séring : name

ulong: count
{s¢tring : member name

TypeCode: membertype }

K @ GIOP message head e
Communication between ORBs is based on GIOP ("General Inter-ORB Protocol”). The GIOP message head has the same format for all message types; it identifies the message type sent to
GIOP Features another ORB.

External data representation GIOP message head structure

Object reference module GIOP

struct Version {octet: major: octet: minor}:
GIOP message
enum MsgType {Request, Reply. CancelRequest, LocateRequest,

Example for IIOP use chateReply, CloseConnection, MessageError, Fragment}

RMI over IIOP sitruct Message_Header {

c/irzr magic[4]: this is the string "GIOP"

Version GIOP_version:

octet flag

octet message_type

usigned long message_size

}

the component flags determines the used byte ordering (big/little endian) and whether or not the entire
message has been divided into several fragments.

message_type is an element of the MsgType enumeration; it identifies the message type.

GIOP message types o @

GIOP supports the following message types:

1

. Request : request the execution of an operation at the remote object, e.g. access of an attribute; the

message contains the call parameters.

2. Reply : answer to a request message.

3. CancelRequest : termination of a request; the calling ORB does not expect an answer to the original

o N DO,

request.

. LocateRequest : is used to determine

whether the given object reference is valid, or

whether the destination ORB processes the object reference, and if not, to which address requests for

the object reference are to be sent.

. LocateReply : answer to LocateRequest
. CloseConnection : the destination ORB notifies the calling ORB that it closes the connection.
. MessageError : exchange of error information.

. Fragment : if, for instance, the request consists of several parts, then first a request message is sent, and

then the remaining parts are sent using fragment messages. o

Inter-ORB protocol & ©

Communication between ORBs is based on GIOP ("General Inter-ORB Protocol”).
GIOP Features

External data representation

Object reference

GIOP message

Example for 11OP use
RMI over lIOP

Example for IIOP use

Web access of a database using a Java applet and Corba.

client environment Web server Corba server
7 get HTML
Web browser page ‘ Web page | ‘ objects
1
HTTP «
‘ 2 Java applet | ORB
send applet [
3 4
Java applet
execution
—
I lop 1op
ORB _

RMI uses JRMP (Java Remote Method Protocol) for the communication between client and server objects, i.e.

there is no interoperability with Corba.

RMI over lIOP

RMI client JRMP RMI server
(Java) (Java)
Comaclent gil;ba server
any programmin)
e p Iganguageg) lor programming
language)

Extension of RMI to RMI-IIOP

database

oo ©@

DCOM grew out of COM (Component Object Model)
tightly integrated into Windows OS.
Goal of COM: support the development of components that can be dynamically activated and that can
interact with each other.
component : executable code either contained in a DLL or in form of an executable program.
COM is offered in form of a library that is linked to a process.

DCOM : extension of COM which allows a process to communicate with components that are placed on
another machine.

DCOM provides access transparency.

Object Model
Architecture
Object Invocation Model

DCOM was combined with Microsoft Transaction Server (MTS) and Microsoft Message Queue Server (MSMQ) to
COM+ .

supports distributed transactions to enable transactional distributed applications

integrated into Windows OS

co @

The overall architecture of DCOM in combination with the use of class objects, objects and proxies has the =
following form.

client machine object server

. . . — 31 type / N .('—\‘
service client appllca:‘\on E lbrary \?Iass object _eb‘{ect/ senvice
mc::;r;;r proxy client ‘ proxy object mcaonnat;::r
scm | marshaler proxy marshaler stub SCM
+ COM COM *
;—i— Local OS Local OS ——
E’=% registry registry F=ﬁ
v

.
Microsoft RPC

&

the type library specifies the exact signature of the method to be invoked dynamically.

network

the registry records the mappings of a call identifier to a local file name containing the implementation of
that class.

the service control manager (SCM) is responsible for activating objects.

port for incoming requests and object identifier are registered by SCM.
the proxy marshaler deals with transforming the code of a proxy into a series of bytes for network
transmission. b

the client proxy represents the object's interface on the client side; responsible for (un)marshaling of object

S e e e o oo s

Object Model % Q

DCOM adopts the remote-object model. i
a DCOM object is simply an implementation of an interface
each interface has a unique 128-bit identifier, called Interface Identifier (11D).
each IID is globally unique.
DCOM supports only binary interfaces; essentially a table with pointers to the implementations of the

methods which are part of the interface.

-

pointer to method

~
, - binary interfaces
implementation

IDL-to-interface
compiler

o
>

[
»

o

memory table language -defined

interfaces

IDL
specification

Java class defs

IDL-to-language
compiler

| Standard
compiler

compiler

C++class defs .
specific code

N A

A DCOM object is created as an instance of a class.
DCOM objects are transient.

Object Invocation Model & @

DCOM supports the remote-invocation model, i.e. a client is blocked until it receives an answer from the remote
object.

use of a cancel object to cancel a pending synchronous call.
Passing of Object References
a client references a remote object via an interface pointer; an interface is implemented by means of a proxy.
how does a process A pass an object reference to process B?

process A process B

Interface 1D

‘ client application }

client proxy
proxy marshaler

client application ‘

=1
marshaled client proxy client
" - RIoXY marshaler proxy

T
network

same binding
information

binding
information

v v

object SN
stub — object/

object server

Jv @ K ©

DCOM grew out of COM (Component Object Model) The {Object Management Group) was founded in 1989 by a number of companies to encourage the
. .)) ' adoption of distributed object systems and to enable interoperability for heterogeneous environments
tightly integrated into Windows OS. h)) o -)

(hardware, networks, operating systems and programming languages).
Goal of COM: support the development of components that can be dynamically activated and that can Object Management Architecture - OMA

interact with each other. Object Request Brokers ORB

Common object services

Inter-ORB protocol

Distributed COM

Integration of Corba/DCOM and Web Services

.NET Framework

Object Model Gener
Architecture

Object Invocation Model

DCOM was combined with Microsoft Transaction Server (MTS) and Microsoft Message Queue Server (MSMQ) to
COM+ .

component : executable code either contained in a DLL or in form of an executable program.
COM is offered in form of a library that is linked to a process.

DCOM : extension of COM which allows a process to communicate with components that are placed on
another machine.

DCOM provides access transparency.

supports distributed transactions to enable transactional distributed applications

integrated into Windows OS

The Microsoft .NET Framework is a software framework available with Windows OS for building distributed provides a runtime environment for applications which may be developed in different languages, e.g. C#, C++,
applications. Java, Perl or Python. CLR supports the following services

represents a strategy change from the product-oriented desktop world to the service-oriented component memory management.

world.

thread management.
goal: many future Windows applications should be built using .NET.

NET has 2 core elements: Common Language Runtime (CLR) and the Framework Glass Library. ibraries encapsulate access to OS functions.

Common Language Runtime (CLR) common intermediale Language (MSIL).
Frame Class Library All .NET programs execute under the supervision of the CLR.
.NET-Remoting Common Type System (CTS)
technolo%y for remote method invocation provided by the framework. CTS defines all possible datatypes and programming constructs supported by the CLR
relevant classes are in the namespace System.Runtime. Remoting . data structures are uniformly interpreted on the MSIL layer.
support of different transport protocols, e.g. TCP (binary formatting) or HTTP (SOAP formatting). enables interoperability between the languages supported by .NET

activation of remote objects. Gerner

Frame Class Library ol ©

object-oriented library of common functions available to all languages using the .NET Framework.
e.g. file access, XML document manipulation, or database interaction.

organized in a hierarchy of namespaces
@stemx@ . <§;'stem.WeD

R @g;osoft.w_iniaé

é/yls_{e;m.w eb .Ser_\;i_c;@

System.Object is the base of all library classes and application classes.

Generazed by Targeseam

E @§: hmework - Windows Internet Explorer

@.\-; - |g C:\wwwlva-ss 12\flashiva_course 10, 7.himl v‘ +3|[x ‘-‘]
Datei Bearbeiten Ansicht Favoriten Extras 7 Px @ -
Pe Favorten | 5 @) Ent @ - B
(& NET Framewaork
7] S
@ .NET Framework o ©

The Microsoft .NET Framework is a software framework available with Windows OS for building distributed 2
applications.

represents a strategy change from the product-oriented desktop world to the service-oriented
compoenent world.
goal: many future Windows applications should be built using .NET.
.NET has 2 core elements: Common Language Runtime (CLR) and the Framework Class Library.
Common Language Runtime (CLR)
Frame Class Library
.NET-Remoting

technology for |'([§n0te method invocation provided by the framework.

relevant classes are in the namespace System.Runtime .Remoting .
support of different transport protocols, e.g. TCP (binary formatting) or HTTP (SOAP formatting).

activation of remote objects.

74 Start

] P 7 o /= NET Framework - ...

.NET Framework

The Microsoft NET Framewaork is a software framework available with Windows OS8 for building distributed
applications.

represents a strategy change from the product-oriented desktop world to the service-oriented component
world.
goal: many future Windows applications should be built using .NET.

.NET has 2 core elements: Common Language Runtime (CLR) and the Framework Class Library.

Common Language Runtime (CLR)

Frame Class Library
.NET-Remoting

technology for remote method invocation provided by the framework.

relevant classes are in the namespace System.Runtime .Remoting .
support of different transport protocols, e.g. TCP (binary formatting) or HTTP (SOAP formatting).

activation of remote objects.

Generated by Targeieam

