Script generated by TTT

Title: Distributed_Applications (16.04.2013)
Date: Tue Apr 16 14:29:58 CEST 2013
Duration: 90:54 min

Pages: 17

'f Internet computing — T )

Networks of heterogeneous computers, applications using shared resources which are geographically dispersed,
information communication (i.e. improved information flow), and activity coordination.

Examples are:
« online flight-reservation
. distribute]i;j money machines

« audio/video conferencing applications, e.g. Microsoft Netmeeting (see the application domain *Computer-
supported Cooperative Work®), Internet telephony (e.g. Skype)

* World Wide Web
* Grid Computing

use the resources of many separate computers connected by a network to solve large-scale
computation problems, e.g. [SETI@home| : Search for Extraterrestrial Intelligence.

* Social software
sharing of private information and collaborative tagging, e.g. Blogs, Flickr, YouTube, Twitter, Facebook

* Massively multiplayer online games MMOGs)

a very large number of users interact through the Internet with a persistent virtual world

'f Development of computer technology

—

1950 specialized applications isolated data
(reserved computing time )
1960
numerical applications
(batch)
1970
commercial applications data modeling
(Time Sharing)
1980
presentation -oriented isolated data, desktop publishing
applications (personal
1890 workstation)
distributed application distributed information management
2000 Multimedia
internet computing Web Services
v service oriented architecture (SOA)

Enterprise Computing

database
file system
application 1 /
database
. file system
application 2 '\‘
,.,—,.,\\l
‘ )
L J services

Enterprise computing systems

close, direct coupling of application programs running on multiple, heterogeneous platforms in a

networked environment.

These systems must be completely integrated and very reliable, in particular

information consistency, even in case of partial system breakdown.
security and guaranteed privacy.

adequate system response times.

high tolerance in case of input and hardware/user errors (fault tolerance).

autonomy of the individual system components.



Background @ —3 Motivation T —)
Variety of domains for distributed applications The foll?wing tactors contribute to the increasing importance of distributed systems:
collaborative information spaces, workflow management, telecooperation, autonomous agents Decrease of processor and storage cost.
Development of computer technology High bandwidth networks

Internet computing

Insufficient and often unpredictable response times of mainframe systems
Enterprise Computing

Growing number of applications with complex information management and complex graphical user
interfaces.

Growing cooperation and usage of shared resources by geographically dispersed users; caused by the
globalization of markets and enterprises,

e.g. applying telecooperation (groupware, CSCW) and mobile communication to improve distributed
teamwork.

Informal definition
Methods of distribution

In the following sections, we will focus on the latter three types of distribution, in particular on the processing
distribution.

¥ Informal definition Methods of distribution — 1
The term distributed system may be defined informally: There are five fundamental methods of distribution:
1. after Tanenbaum : a distributed system is a collection of independent computers which appears to the user 1. Hardware components.
as a single computer. 2 Load
2. after Lamport : a distributed system is a system that stops you from getting any work done when a machine 3. Data
you've never heard of crashes. ’ '
3 4. Control, e.g. a distributed operating system.
' 5. Processing, e.g. distributed execution of an application.

Definition: We define a distributed system as one in which hardware and software components located at
networked computers

communicate and
coordinate their actions mainly by passing messages.

Ly -




Key Characteristics of distributed Systems — {5 )
Motivation
Properties of distributed systems
Challenges of distributed systems
Examples for development frameworks
Generated by Targeteam
'f Examples for development frameworks — T

~

There is a high motivation to use standardized development frameworks for the design and implementation of
distributed applications.

Sun Network File System (NFS) by SUN

a distributed file system behaving like a centralized file system.

Open Network Computing (ONC) by SUN Iy

platform for distributed application design; it contains libraries for remote procedure call (RPC) and
for external data representation (XDR) .

distributed applications in ODP (Open Distributed Processing) by 1SO

specification of the interfaces and the component behavior.

Common Object Request Broker Architecture (CORBA) hy OMG

defines a common architecture model for heterogeneous environments based on the object-oriented
paradigm.
Java 2 Platform Enterprise Edition (J2EE) by Sun, e.g. RMI
component-based Java framework providing a simple, standardized platform for distributed
applications; runtime infrastructure and a set of Java API's.
@ framework of Microsoft
middleware platform especially for Microsoft environments
consists of a class library and a runtime environment
incorporates the distributed component object model (DCOM)

Challenges of distributed systems

w5

— T

The design of distributed systems poses a number of challenges

Heterogeneity applies to networks, computer hardware, operating systems, programming languages and
implementations by different programmers.

Use of m%idfeware to provide a programming abstraction masking the heterogeneity of the underlying
system.

middleware provides a uniform computational model for use by the programmers of servers and
distributed applications.

middleware examples are Corba , Java BMI .

Openness requires standardized interfaces between the various resources.
Scalability : adding new resources to the overall system.

Security : for information resources.

Privacy : protect user profile information.

Distributed application — 1" —)

a set of cooperating, interacting functional units
reasons for distribution: parallelism during the execution, fault tolerance , and inherent distribution of
the application domain.

Definition

Programmer's perspective

Interfaces help to establish well-defined interaction points between the components of a distributed
application.

Interfaces of a distributed gppl&cation

Interface specification

Distributed application vs. parallel program




Distributed application

— T

a set of cooperating, interacting functional units

reasons for distribution: parallelism during the execution, fault tolerance , and inherent distribution of
the application domain.

Definition
Programmer's perspective B

Interfaces help to establish well-defined interaction points between the components of a distributed
application.

Interfaces of a distributed application

Interface specification

Distributed application vs. parallel program

Distributed application vs. parallel program

— 1

Although distributed applications might look similar to parallel programs at first glance, there are still some
differences.

distributed application parallel program

granularity coarse fine

data space private shared

failure handling within the communication protocols not considered

w5

Distributed application — 1‘ —)

a set of cooperating, interacting functional units Iz

reasons for distribution: parallelism during the execution, fault tolerance , and inherent distribution of
the application domain.

Definition
Programmer's perspective

Interfaces help to establish well-defined interaction points between the components of a distributed
application.

Interfaces of a distributed application
Interface specification

Distributed application vs. parallel program

Influential distributed systems

— 7

Xerox PARC experimented in the 1970's with distributed applications (Alto workstation, Ethernet).

book of Ken Birman (chap 27) gives a brief overview of a number of distributed systems, e.g. Amoeba,
NavTech, Totem, Argus, etc.

Mach

Sun Network File System (NFS)

Java 2 Platform Enterprise Edition (J2EE)
Google




Architecture

T~

The process (a task) defines an execution environment that provides secured access to system resources such
as virtual memory and communication channels.

A process consists of a set of threads.

applications
server virtual memory network process
subsystems management server management
microkernel ik

communication channels / memory objects

threads as distribution unit, i.e. only entire threads are assigned to different processors.

memory objects realize virtual storage units; shared utilization of memory objects by different processes is
based on "Copy-on-Write", i.e. the memory object is copied when write operation takes place.

Mach message exchange

Processes communicate through communication channels, called ports .
port 47

process 1 process 2

send to port 47

A port is realized as a message queue to which multiple senders may send messages; there is only one
receiving process per queue.

Ports are protected by capabilities.

Mach supports network communication through network servers.

process 1 port 67 process 2
send to ort 47
port 47 port 135467 ig’r‘tdé;’
network send to network network
server port 135467 server




