Script generated by TTT

Title: Distributed_Applications (04.06.2013)
Date: Tue Jun 04 14:30:48 CEST 2013
Duration: 89:10 min

Pages: 27

¥ Network Time Protocol (NTP)
Cristian and Berkeley algorithm are intended for the Intranet.
NTP defines an architecture for a time service and a protocol to distribute time information over the
Internet.

use of 64 bit timestamps.

NTP synchronizes clients to UTC.

Primary servers are connected
to UTC sources

Secondary servers are
synchronized to primary
servers

Synchronization subnet - lowest
level servers in users’ computers

NTP - synchronization of servers

Messages between a pair of NTP peers
Accuracy of NTP

'f Synchronizing physical clocks

(=

physical clocks are used to compute the current time in order to timestamp events, such as

modification date of a file
time of an e-commerce transaction for auditing purposes

External - internal synchronization

Clock correctness
Synchronization in a synchronous system

Cristian's method for an asynchronous system
Network Time Protocol (NTP)
Precision Time Protocol (PTP)

Synchronizing physical clocks

physical clocks are used to compute the current time in order to timestamp events, such as

modification date of a file
time of an e-commerce transaction for auditing purposes

External - internal synchronization I
Clock correctness

Synchronization in a synchronous system

Cristian's method for an asynchronous system
Network Time Protocol (NTP)
Precision Time Protocol (PTP)

Synchronization Message Exchange T Precision Time Protocol (PTP) e 15
PTP defines a master-slave hierarchy. PTP is a protocol to synchronize clocks throughout a computer network
Master T Ta NTP is typically used over the Internet handling large amounts of nondeterministic delays; accuracy in the ms-
> range.
K / Delay PTP is designed for LANs achieving clock accuracy in the sub-microsecond range.
sync E?HOW_UP Delay respoqse] Synchronization Message Exchange
\\ request \ time PTP supports an algorithm to perform a distributed selection of the best candidate clock.
<4 b | > Gen
Slave T2 T3
timestamps T T2,T1,T3
known by slave T2, T1 T2,T1, 73, T4

master periodically transmits a Sync message using UDP multicast.
the follow-up message includes the actual time the Sync message left the master.

slave initiates exchange with master to determine round-trip delay: delay-request and delay-response
messages.

if dis the transit time for the Sync message and o the constant offset between master and slave clocks
T2-T1-=0+dandT4-T3=-0+d

0=(T2-T1-T4 +T3)/2

'f Time

Basic mechanisms for distributed applications e %)

Time is an important and interesting issue in distributed systems

Issues

We need to measure time accurately: The following section discusses several important basic issues of distributed applications.

to know the time an event occurred at a computer Data representation in heterogeneous environments.

to do this we need to synchronize its clock with an authoritative external clock Discussion of an execution maodel for distributed applications.
. _— What is the appropriate error handling?
Algorithms for clock synchronization useful for ' ppropri ror na

. . What are the characteristics of distributed transactions?
concurrency control based on timestamp ordering

What are the basic aspects of group communication (e.g. algorithms used by 181S) ?
authenticity of requests e.g. in Kerberos) o . . .
How are messages propagated and delivered within a process group in order to maintain a consistent
Three notions of time:

state?
time seen by an external observer = global clock of perfect accuracy. External data representation
However, there is no global clock in a distributed system Time
time seen on clocks of individual processes. Distributed execution model
logical notion of time: event a occurs before event b. Failure handling in distributed applications
Introduction Distributed transactions
Synchronizing physical clocks Group communication

Distributed Consensus

Authentication service Kerberos

Classes of events

T~

Components of a distributed application communicate through messages causing events in the components.
The componerit execution is characterized by three classes of events:

internal events (e.g. the execution of an operation).

message sending.

message receiption.

in some cases distinction between message reception and message delivery to application as
separate events.

The execution of a component TK creates a sequence of events e, ..., en ...

The execution of the component TK; is defined by (E;, —) with:

E; is the set of events created by TK; execution
— defines a total order of the events of TK;

The relation —msy defines a causal relationship for the message exchange:

send(m) — s receive(m), i.e. sending of the message m must take place prior to receiving m.

There are the following interpretations

a— Db, i.e. abefore b; b causally depends on a.

a| b, ie.aandb are concurrent events.

Ordering by logical clocks

Each component manages the following information:
its local logical clock Ic; Ic determines the local progress with respect to occuring events.

its view on the global logical clock gc; the value of the local clock is determined according to the value of
the global clyck.

There exist functions for updating logical clocks in order to maintain consistency; the following two rules apply.
Rules
* Rule R1 specifies the update of the local clock Ic when events occur.
* Rule R2 specifies the update of the global clock gc.
1. Sending event : determine the current value of the local clock and attach it to the message.

2. Receiving event : the received clock value (attached to the message) is used to update the view on the
global clock.

Rules for "happened-before" after Lamport

— T

In order to guarantee consistent states among the communicating components, the messages must be delivered
in the correct order. The happened-before relation after Lamport may help to determine a message sequence for
a distributed application.

The following rules apply:

Events within a component are ordered with respect to the before-relation i.e. a — b

if "a" is a send event of component TK1, and "b" the respective receive event of component TK2, then
a—b;

ifa—bandb — ¢, thena—c;
if - (& —b)and-(b— a), then a| b;ie. aandb are concurrent, i.e. they are not ordered.

Utilization of logical clocks to determine the event sequence.
Let

T: a set of timestamps
C: E — T amapping which assigns a timestamp to each event

a— b= Ca) < C(b)

If the reverse deduction is valid, too (<), then the clock is called strictly consistent.

Distributed execution model

Events

Classes of events
Rules for "happened-before" after Lamport

Ordering by logical clocks

Logical clocks based on scalar values
Description
Example

Logical clocks based on vectors
Description

Example for vector clocks
Characteristics of vector clocks

Example — T —) Description — T —)
&
The time is represented by n-dimensional vectors with positive integers. Each component TK; manages its own

TK1 vector vt [1....n]. The dimension n is determined by the number of components of the distributed application.

vii [i] is the local logical clock of TK; .
TK2

vi; [k] is the view of TK; on the local logical clock of TK ; it determines what TK; knows about the progress
TK3 of TKk

Example: vt; [k] =y, i.e. according to the view of TK; , TK has advanced to the state y, i.e. up to the event
The scalar clock mechanism defines a partial ordering on the occurring events. y.

scalar clocks are not strictly consistent | i.e.

o the vector vt; [1....n] represents the view of TK; on the global time (i.e. the global execution progress for all
the following is not true: C(a) <« C(b) = a—b

compdnents).
G e Execution of R1
v [i] i= vt [i] + d
Execution of R2
After receiving a message with vector vt from another component, the following actions are performed at the
component TK;
update the logical global time: 1 < k < n: vi; [k] := max (vt [k], vt[k]).
execute R1
deliver message to the application process of component TK;
Ger
'f Example for vector clocks — T) Description — T —
The time is represented by n-dimensional vectors with positive integers. Each component TK; manages its own
vector vt [1....n]. The dimension n is determined by the number of components of the distributed application.
TK1 vii [i] is the local logical clock of TK; .
vi; [k] is the view of TK; on the local logical clock of TK ; it determines what TK; knows about the progress
of TKg
TK2 Example: vt; [k] =y, i.e. according to the view of TK; , TK, has advanced to the state y, i.e. up to the event
v. Iy
the vector vt; [1....n] represents the view of TK; on the global time (i.e. the global execution progress for all
TK3 components).
0 2 Execution of R1
0 3] .)
1 2l |13 |4 vt [i] == vt [i] + d
optimization: omit vector timestamps when sending a burst of multicasts Execution of R2
i'lmissing timestamp means: use values of previous vector timestamp and increment the sender’s field After receiving a message with vector vt from another component, the following actions are performed at the
only. component TK;

update the logical global time: 1 < k < n: vi; [k] := max (vt [k], vt[k]).
execute R1

deliver message to the application process of component TK;

Distributed execution model e"@ ']‘)

Events

Classes of events
Rules for "happened-before" after Lamport

Ordering by logical clocks

Logical clocks based on scalar values
Description
Example

Logical clocks based on vectors
Description

Example for vector clocks
Characteristics of vector clocks

Basic mechanisms for distributed applications o @ ~—)

Issues

The following section discusses several important basic issues of distributed applications.
Data representation in heterogeneous environments.
Discussion of an execution model for distributed applications.
What is the appropriate error handling?
What are the characteristics of distributed transactions?
What are the basic aspects of group communication (e.g. algorithms used by ISIS) ?

How are messages propagated and delivered within a process group in order to maintain a consistent
state?

External data representation
Time

Distributed execution model

Failure handling in distributed applications

Distributed transactions

Group communication

Distributed Consensus

Authentication service Kerberos

'f Distributed execution model

Events
Classes of events
Rules for "happened-before" after Lamport

Ordering by logical clocks

Logical clocks based on scalar values
Description
Example

Logical clocks based on vectors
Description

Example for vector clocks
Characteristics of vector clocks

Motivation

Failures in a local application

handled throggh a programmer-defined exception-handling routine.

no handling.

Failures in a distributed application. Failures may be caused by

communication link failures.

crashes of machines hosting individual subsystems of the distributed application.

— B

The client crashes = the server waits for RPC calls of the crashed client; server does not free

reserved resources.

The server crashes = client cannot connect to the server.

byzantine failures: processes fail, but may still respond to environment with arbitrary, erratic behavior

(e.g., send false acknowledgements, etc.)
failure-prone RPC-interfaces.

bugs in the distributed subsystems themselves.

Failure handling in distributed applications — @)
Motivation
Steps for testing a distributed application
Debugging of distributed applications
Approaches of distributed debugging
Generated by Targerean
Debugging of distributed applications o T ~—)

Problems with distributed applications

Due to the distribution of the components and the necessary communication between them debugging
must handle the following issues.

1. Communication between components.

Observation and control of the message flow between components.
e, R

2. Snapshots.

no shared memory, no strict clock synchronization.
JA

state of the entire system.
——
the global state of a distributed system consists of the local states of all components, and

the mw in the network. —_—

3. Breakpoints and single stepping in distributed applications.
it e

4. Nondeterminism.

In general, message transmission time and delivery sequence is not deterministic.
—_—
= failure situations are difficult to reproduce, if at all.

—— e

5. Interference between debugger and distributed application.

A
irregular time delay of component execution when debugging operations are performed.

¥ Debugging of distributed applications — 1
Setting a breakpoint in the server code and inspecting the local variables can cause a timeout in the client i

process.
Problems with distributed applications

Due to the distribution (% the components and the necessary communication between them debugging
must handle the following issues.

1. Communication between components.
Observation and control of the message flow between components.
2. Snapshots.
no shared memory, no strict clock synchronization.
state of the entire system.
the global state of a distributed system consists of the local states of all components, and

the messages under way in the network.

3. Breakpoints and single stepping in distributed applications.
4. Nondeterminism.

In general, message transmission time and delivery sequence is not deterministic.
= failure situations are difficult to reproduce, if at all.

5. Interference between debugger and distributed application.

irregular time delay of component execution when debugging operations are performed.

Failure handling in distributed applications e %)

Motivation
Steps for testing a distributed application

Debugging of distributed applications

Approaches of distributed debugging

Approaches of distributed debugging — T

focus on the send/receive events caused by the message exchange and less on the internal component
operations.

Monitoring the communication between components

Global breakpoint

Approach
Causally distributed breakpoint

Example of a distributed debugger:

IBM IDEBUG: a multilanguage, multiplatform debugger with remote debug capabilities.

Distributed transactions — T)

Distributed transactions are an important paradigm for designing reliable and fault tolerant distributed applications;
particularly those distributed applications which access shared data concurrently.

General observations
Isolation
Atomicity and persistence

Two-phase commit protocol (2PC)
Distributed Deadlock

'f Approaches of distributed debugging P *{5

focus on the send/receive events caused by the message exchange and less on the internal component
operations.

Monitoring the communication between components

Global breakpoint

Approach
Causally distributed breakpoint

Example of a distributed debugger:

IBM IDEBUG: a multilanguage, multiplatform debugger with remote debug capabilities.

General observations 1‘)

Several requests to remote servers (e.g. RPC calls) may be bundled into a transaction.
begin-transaction
callrpc (OP1) I}
callrpc (OPn)
end-transaction
A distributed transaction involves activities on multiple servers, i.e. within a transaction, services of several
servers are utilized.
Transactions satisfy the ACID property: Atomicity, Consistency, Isolation, Durability.
1. atomicity : either all operations or no operation of the transaction is executed, i.e. the transaction is a
success (commit) or else has no consequence (abort).
2. durability : the results of the transaction are persistent, even if afterwards a system failure occurs.

3. isolation : a not yet completed transaction does not influence other transactions; the effect of several
concurrent transactions looks like as if they have been executed in sequence.

4. consistency : a transaction transfers the system from a consistent state to a new consistent state.

