Script generated by TTT

Title: Distributed_Applications (10.06.2013)
Date: Mon Jun 10 09:10:50 CEST 2013
Duration: 47:05 min

Pages: 15

Isolation

— T
3

Isolation refers to the serializability of transactions. All involved servers are responsible for the serialization of
distributed transactions. Example:

let U, T be distributed transactions accessing shared data on the two servers R and S.

if the transactions at server R are successfully executed in the sequence U before T, then the same
commit sequence must apply to server S.

Timestamp ordering
Locking
Optimistic concurrency control

if conflicts are rare, optimistic concurrency control may be useful: no additional coordination necessary during
transaction execution.

The check for access conflicts occurs when transactions are ready to "commit”;

Examples

Generazed by Targetear

&
s F%men ¥ @

(& General observations

\va-ss13\whiteboard'va_courses. 5, 1.himl v+ | x|] Pl ||| x

Several requests to remote servers (e.g. RPC calls) may be bundled into a transaction.
begin-transaction

callrpc (OP1)

callrpc (OPn ., ...,)
end-transaction
A distributed transaction involves activities on multiple servers, i.e. within a transaction, services of several
servers are utilized.
Transactions satisfy the ACID property: Atomicity, Consistency, Isolation, Durability.
1. atomicity : either all operations or no operation of the transaction is executed, i.e. the transaction is a
success (commit) or else has no consequence (abort).
2. durability : the results of the transaction are persistent, even if afterwards a system failure occurs.

3. isolation : a not yet completed transaction does not influence other transactions; the effect of several
concurrent transactions looks like as if they have been executed in sequence.

4. consistency : a transaction transfers the system from a consistent state to a new consistent state.

Genera

Timestamp crdering T

In a single server transaction, the server issues a unique timestamp to each transaction when it starts.
In a distributed transaction each server is able to issue globally unique timestamps.

for distributed transactions, the timestamp is the pair

(local timestamp, server-ID)
The local timestamp refers to the first server which issued the transaction timestamp.
Assume: timestamp(trans) = tyans and timestamp(obj) = top;

transaction trans accesses object obj

FF (tirans ¢ tonj) £2en abort(trans) e/fse access obj:

Locking

— T

Each server maintains locks for its own data items. Transaction trans requests lock (e.g. read, write lock) before
access.

A transaction trans is well-formed if:
trans locks an object obj before accessing it.

trans does not lock an object obj which has already been locked by another transaction; except if the
locks can coexist, €.g. two read locks.

prior to termination, trans removes all object locks.

Ik

A transaction is called a 2-phase transaction if no additional locks are requested after the release of objects
("2-phase locking”).

Examples

— 1

The following examples show the concurrency control approaches used by some current systems.
Dropbox

cloud service that provides file backup and enables users to share files and folders, accessing them from
anywhere.

uses optimistic concurrency control; file granularity.
Wikipedia

creating and managing of wiki pages

uses optimistic concurrency control for editing.
Google Docs

cloud service providing web-based applications (word processor, spreadsheet and presentation) that allow
users to collaborate by means of shared documents.

awareness based concurrency control: if several people edit the same document simultaneously, they wil
see each other's changes.

Isolation

w5

— T

Isolation refers to the serializability of transactions. All involved servers are responsible for the serialization of
distributed transactions. Example:

let U, T be distributed transactions accessing shared data on the two servers R and S.
it the transactions at server R are successfully executed in the sequence U before T, then the same
commit sequence must apply to server S.

Timestamp ordering

Locking
Optimistic concﬁrrency control

if conflicts are rare, optimistic concurrency control may be useful: no additional coordination necessary during
transaction execution.

The check for access conflicts occurs when transactions are ready to "commit”;

Examples

Atomicity and persistence e 1")

These aspects of distributed transactions may be realized by one of the following approaches. Let trans be a
transaction.

Intention list
all object modifications performed by trans are entered into the intention list (log file).

When traris commits successfully, each server S performs all the modifications specified in ALs (trans)
in order to update the local objects; the intention list ALs (trans) is deleted.

New version

When trans accesses the object obj, the server S creates the new version objians ; the new version is only
visible to trans.

When trans commits successfully, objyans becomes the new, commonly visible version of obj.

It trans aborts, objyans is deleted.

ok

Two-phase commit protocol (2PC) — T)

[S=—ri

This protocol supports the communication between all involved servers of the distributed transaction in order to
jointly decide if the transaction should commit or abort.

We can distinguish between two phases

Voting phase : the servers submit their vote whether they are prepared to commit their part of the
distributed transaction or they abort it.

Completion pha&: it is decided whether the transaction can be successfully committed or it has to be
aborted; all servers must carry out this decision.
Steps of the two-phase commit protocol

Operations
Communication in the two-phase commit protocol

Problems
Generated by Targerean
IRy ¥ Operations — T —

The coordinator communicates with the participants to carry out the two-phase commit protocol by means of the
following operations:

canCommit(trans) = Yes/No: call from the coordinator to ask whether the participant can commit a
transaction; participant replies with its vote.

doCommit(trans): call from the coordinator to tell participant to commit its part of a transaction.
doAhort(trans): call from the coordinator to tell participant to abort its part of a transaction.

haveCommitted(trans, participant): call from participant to coordinator to confirm that it has committed the
transaction.

gIatDecision(trans) = Yes/No: call from participant to coordinator to ask for the decision on trans.

Dk

(S

Steps of the two-phase commit protocol

T~

One component (g.g. the client initiating the transaction or the first server in the transaction) becomes the
coordinator for the commit process. In the following we assume, client C is the coordinator.

/j
LS4
\T
cC +—» 'K5i>
N C
N (s0)
L
1. Coordinator C contacts all servers S; of the distributed transaction trans requesting their status for the
commit (CanCommit?)
- if server Sy is not ready, i.e. it votes no, then the transaction part at S, is aborted,;
= Jiwith S is not ready
then trans is aborted; the coordinator sends an abort message to all those servers who have voted
with ready (i.e. yes).
2. ¥iwith 8 is ready, i.e. commit transaction trans. Coordinator sends a commit message to all servers.

3. Servers send an acknowledgement to the coordinator.

Communication in the two-phase commit protocol

— T -

coordinator Server
ready to —— CanCommit? d
ready
commit to
| yes commit
committed L_'—____Dicm
——» committed
finished < HaveCommitted

Number of messages: 4 * N messages for N servers.

During the 2PC process several failures may occur

one of servers crashes.

the coordinator crashes.

Problems

depending on their state, this may result in blocking situations, e.g. the coordinator waits for the commit

acknowledge of a server, or a server waits for the final decision (commit or abort).

Extended 2PC

Three-Phase Commit protocol (3PC) is another approach to overcome blocking of servers until the crashed

coordinator recovers.

During the 2PC process several failures may occur

one of servers crashes.

the coordinator crashes.

Problems

depending on their state, this may result in blocking situations, e.g. the coordinator waits for the commit

acknowledge of a server, or a server waits for the final decision (commit or abort).

Extended 2PC

Three-Phase Commit protocol (3PC) is another approach to overcome blocking of servers until the crashed

coordinator recovers.

Dk

(S

Ml

Extended 2PC T

Coordinator:
multicast: ok to commit?
collect replies
all ok =>
log commit to outcomes table
wait until saved to persistent store
send commit
else => send abort
collel@ acknowledgements
garbage collect data fram outcomes table

After Failure:
for each pending protocol in outcomes table
send outcome (commit or abort)
wait for acknowledgements
garbage collect data from outcomes table

T Distributed transactions

Server: first time message (CanCommit) received
ok to commit =>
save data to temp area (persistent store)
reply ok
commit =>
make change permanent
send acknowledgement
abort => delete temp area

message is a duplicate (recovering coordinator)
send acknowledgement

After Failure :
for each pending protocol
contact coordinator to learn outcome

et

Distributed transactions are an important paradigm for designing reliable and fault tolerant distributed applications;
particularly those distributed applications which access shared data concurrently.

General observations

Isolation

Atomicity and persistence
Two-phase commit protocol (2PC)
Distributed Deadlock

