Script generated by TTT

Title: FDS (10.05.2019)
Date: Fri May 10 08:30:32 CEST 2019
Duration: 89:37 min

Pages: 76

Proof method simp

Goal: 1.[Py;...;P,]=C

apply(simp add: eq, ... eq,)

Simplify P, ... P,, and C using
® |lemmas with attribute simp
® rules from fun and datatype

& TIT D P MPOCARD 100% @ [& Fri08:30 Tobias Nipkow Q @

O Simplification

Proof method simp
Goal: 1.[Py;...;P,] = C

apply(simp add: eq, ... eq,)
Simplify Py ... P,, and C using
® |lemmas with attribute simp
® rules from fun and datatype
® additional lemmas eq; ... eq,

Proof method simp

Goal: 1.[Py;...;P,]=C

apply(simp add: eq, ... eq,)
Simplify Py ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype
® additional lemmas eq; ... eq,
® assumptions P; ... P,

Proof method simp
Goal: 1.[Py;...;P,] = C

apply(simp add: eq, ... eq,)

Simplify P; ... P,, and C using
® |lemmas with attribute simp
e rules from fun and datatype

additional lemmas eq; ... eq,
® assumptions P, ... P,

Proof method simp

Goal: 1.[Py;...;P,]=C

apply(simp add: eq, ... eq,)
Simplify P, ... P,, and C using
® |lemmas with attribute simp

rules from fun and datatype

additional lemmas eq; ... eq,

assumptions Py ... P,

ariations:

(simp ... del: ...) removes simp-lemmas

add and del are optional

auto versus stmp

® quto acts on all subgoals
® simp acts only on subgoal 1

auto versus Simp

® quto acts on all subgoals
® simp acts only on subgoal 1

® quto applies simp and more

~
©

Proof method simp

Goal: 1.[Py;...;P,]=C

apply(simp add: eq, ... eq,)
Simplify P; ..
® |lemmas with attribute simp

. P,, and C' using

® rules from fun and datatype
® additional lemmas eq; ... eq,
® assumptions Py ... P,

e (simp ... del: ...) removes simp-lemmas

® add and del are optional

auto versus simp

auto acts on all subgoals
simp acts only on subgoal 1

auto applies simp and more

auto can also be modified:
(auto simp add: ... simp del: ...)

79

auto versus stmp

auto acts on all subgoals
simp acts only on subgoal 1

auto applies simp and more

auto can also be modified:
(auto simp add: ... simp del: ...)

79

Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: fdef ...)

Case splitting with simp /auto
Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— Pla)) A (Vn. e= Sucn — P(b))

80

Case splitting with simp /auto
Automatic:

P (if A then s else t)

(A — P(s)) N (WA — P(1))

Case splitting with simp /auto
Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— Pla)) A (Vn. e= Sucn — P(b))
Proof method: (simp split: nat.split)

Case splitting with simp /auto

Automatic:

P (if A then s else t)

(A — P(s)) N (WA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— Pla)) A (Vn. e= Suc n — P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t. t.split

Splitting pairs with simp/auto

How to replace

P (let (z, y) = tin u z y)

©
=

Splitting pairs with simp /auto

How to replace

P (let (z, y) = tinuxy)
or
P (case t of (z, y) = u x y)

82

Splitting pairs with simp /auto

How to replace

P (let (z, y) = tin u z y)
or
P (case t of (z, y) = u x y)
by
Vey t=(z,y) — P(uzy)

Splitting pairs with simp /auto

How to replace

P (let (z, y) = tin u zy)
or
P (case t of (z, y) = u x y)
by
Vey t=(z,y) — P (uzy)

Proof method: (simp split: prod.split)

Simp_Demo.thy

©
~

Preview: sets

Type: 'a set

Preview: sets

Type: 'a set
Operations: a € A, AU B, ...
Bounded quantification: VacA. P

Proof method auto knows (a little) about sets.

86

The (binary) tree library The (binary) tree library

imports "HOL-Library.Tree" imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

The (binary) tree library The (binary) tree library
imports "HOL-Library.Tree" imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy) (File: isabelle/src/HOL/Library/Tree.thy)
datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree) datatype a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:
() Leaf

(1, a, 1) Node | a r

87

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

Leaf
Node l a r

—~
>

©
Q

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

The (binary) tree library

Size = number of nodes:

size 2 'a tree = nat

size () =0

size (I, _, r) = size | + size r + 1

88

The (binary) tree library

The set of elements in a tree:

set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a,) = set_tree | U {a} U set_tree r

89

The (binary) tree library

The set of elements in a tree:

set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r) = set_tree [U {a} U set_tree r

Inorder listing:

inorder :: 'a tree = 'a list

inorder () = ||

inorder (I, z, vy = inorder | Q [z] Q inorder r

@

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (1, a,) =

(bst I A

bst r N\

(Vzeset_tree I x < a) N\ (Va€set_tree r. a < 1))

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

90

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, 1) =

(bst I A

bst r A

(Vazeset_tree . x < a) N (Va€settree 1. a < 1))

For any type ‘a ?

90

Isabelle’s type classes

©
=

Isabelle’s type classes

A type class is defined by
® a set of required functions (the interface)
® and a set of axioms about those functions

Isabelle’s type classes

A type class is defined by

® a set of required functions (the interface)

91

Isabelle’s type classes

A type class is defined by

® a set of required functions (the interface)

® and a set of axioms about those functions

Example:

class linorder: linear orders with <, <

91

Isabelle’s type classes
A type class is defined by

® a set of required functions (the interface)

® and a set of axioms about those functions
Example: class linorder: linear orders with <, <
A type belongs to some class if

® the interface functions are defined on that type

©
=

Isabelle’s type classes

A type class is defined by

® a set of required functions (the interface)

® and a set of axioms about those functions
Example: class linorder: linear orders with <, <
A type belongs to some class if

® the interface functions are defined on that type

® and satisfy the axioms of the class (proof needed!)

Isabelle’s type classes
A type class is defined by

® a set of required functions (the interface)

® and a set of axioms about those functions
Example: class linorder: linear orders with <, <
A type belongs to some class if

® the interface functions are defined on that type

® and satisfy the axioms of the class

Isabelle’s type classes

A type class is defined by

® a set of required functions (the interface)

® and a set of axioms about those functions
Example: class linorder: linear orders with <, <

A type belongs to some class if
® the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: C' means type 7 belongs to class C

91

Isabelle’s type classes Case study
A type class is defined by

® a set of required functions (the interface)

® and a set of axioms about those functions
Example: class linorder: linear orders with <, < BST_Demo . thy
A type belongs to some class if

® the interface functions are defined on that type

® and satisfy the axioms of the class (proof needed!)

Notation: 7 :: C' means type 7 belongs to class C

Example: bst :: ('a :: linorder) tree = bool

©
=

92

Case study
Chapter 4

DAOT T\ aen ~ T, PR

Logic and Proof
s@wg = ' Sessep g
gl@w-()< Qi’ e/ Beyond Equality

@ Logical Formulas

@ Proof Automation

@ Single Step Proofs

©
a

¢ (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vaz. form | Jz. form
Examples
~AANBVC = (WA ABVC

Syntax (in decreasing precedence):

form == (form) | term =term | —form
| form A form | formV form | form — form
| Va. form | . form

E

Syntax (in decreasing precedence):

form == (form) | term =term | —form
| form A form | formV form | form — form
| V. form | Jz. form
dmple
~AANBVC = (WA ANBVC
s=tNC = (s=t)ANC

97

Syntax (in decreasing precedence): Syntax (in decreasing precedence):
form == (form) | term =term | —form form == (form) | term =term | —form
| form A form | formV form | form — form | form A form | formV form | form — form
| V. form | Jzx. form | Va. form | . form
Examples Exampl
“AANBVC = ((-A)A) - AANBVC = (A ANBVC
s=tNC = (s=0)ANC s:t/\C’E(s:t)/\C’
ANB=BANA = AN(B=B ANA ANB=BANA = AN(B=B ANA
I L
Syntax (in decreasing precedence): Syntax (in decreasing precedence):
form = (form) | term =term | —form form == (form) | term =term | —form
| form A form | formV form | form — form | form A form | formV form | form — form
| Vaz. form | Jz. form | V. form | Jz. form
Examples: Examples
-~ AANBVC = (A ANBVC -~ AANBVC = (A ANBVC
s=tNC = (s=t)ANC s=tNC = (s=t)ANC
ANB=BANA = AN(B=DB) ANA ANB=BANA = AN(B=DB ANA
V. Pz AN Qzx = Va. (Pz A Q 1) V. Pz AN Qz = Yo (Pz A Q1)

Input syntax +— (same precedence as —»)

©
@

. and their ascii representations:

o <>Il>/|_l_l<(

\<forall>
\<exists>
\<lambda>
-—>

<>

/\

\/

\<not>
\<noteq>

Mathematical symbols

ALL
EX
h

100

Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

I PAVZ Q2 ~ PANz Qz) !

99

Sets over type ‘a
'a set

¢ {}' {61,...,671}

101

Sets over type ‘a

'a set

® {}' {617"'7677}
e cc A, ACB

e AUB, AnB A-B -—-A

Sets over type ‘a

'a set

{}' {61,...76,7}
ec A, ACB

AUB, AnB A-B -—-A
{x. P} where z is a variable

Sets over type 'a

'a set

° {}’ {617'”76'”}
e cc A, ACRB

e AUB ANB A-B
e {x. P} where zis a variable

— A

101

@ Proof Automation

102

simp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.

simp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck
® highly incomplete

fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.
® incomplete but better than auto.
® Succeeds or fails

104

fastforce

rewriting, logic, sets, relations and a bit of arithmetic.
incomplete but better than auto.

Succeeds or fails

Extensible with new simp-rules

104

Sledgehammer

106

blast

e A complete proof search procedure for FOL ...
e ... but (almost) without "="

105

Architecture:

Isabelle

external
ATPs!

1 Automatic Theorem Provers

107

G Architecture:

Isabelle

Goal
& filtered library b T Proof

external
ATPs!

by(proof-method)

apply(proof-method)

Characteristics: done

e Sometimes it works,
® sometimes it doesn't.

! Automatic Theorem Provers

D Architecture: 5 Architecture:
Isabelle Isabelle
Goal \L Goal \L T Proof
& filtered library & filtered library
external external
ATPs! ATPs!
L Automatic Theorem Provers L Automatic Theorem Provers
107 107
[FHEN \

107 108

Auto_Proof_Demo.thy

109

