o &

Script generated by TTT

Title: FDS (19.07.2019)

Date: Fri Jul 19 08:34:10 CEST 2019
Duration: 80:46 min

Pages: 75

Archive of Formal Proofs

https://www.isa-afp.org/entries/Amortized_
Complexity.shtml

€ TIT D 3 DML D oe% @) [@ Fri08:34 TobiasNipkow Q @

Archive of Formal Proofs

https://wwuw.isa-afp.org/entries/Amortized_
Complexity.shtml

246

Archive of Formal Proofs

E@-E-;@ieb(‘ L -

246 246

A skew heap is a self-adjusting heap (priority queue)

249

A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min
have amortized logarithmic complexity.

Functions insert and del_min are defined via merge

249

A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min
have amortized logarithmic complexity.

249

Implementation type

Ordinary binary trees

Invariant: heap

250

merge merge
merge () h = h merge () h = h
merge h () = h merge h () = h
Swap subtrees when descending:
CIEY EIE
merge merge

merge () h = h

merge h () = h

Swap subtrees when descending:

merge ({l, ai, 1) =: h1) ((b, az, 1) =: hy) =
(if a1 < ay then (merge hy 1, a1,)

else (merge hy 1, as, b))

Very similar to leftist heap but

251

Logarithmic amortized complexity

Theorem
t-merge ty by + ® (merge ty &) — ® t, — D 1y
< 3 logy (|1 + |k[1) + 1

254

Towards the proof

Right heavy:
rh 1 r= (if |I| < |r| then 1 else 0)

Number of right heavy nodes on left spine:

Irh () =0
Irh(l, , vy =rhlr+Irhl

255

Towards the proof

Right heavy:
rh 1 r= (if |l < |r| then 1 else 0)

255

Towards the proof

Right heavy:
rh [r= (if || < |r| then 1 else 0)

Number of right heavy nodes on left spine:
Irh () =0
Irh (I, , ry =r1hlr+Irhl

Lemma
217‘hh S |h‘ + 1

255

Towards the proof

Right heavy:
rh 1 r= (if || < |r| then 1 else 0)

Number of right heavy nodes on left spine:
Irh () =0
Irh (I, , vy =rhlr+ Ilrhl

Lemma
2k < || + 1

Corollary
Irh h < logs |h|1

Potential

The potential is the number of right heavy nodes:
o ()=0

S = l+Pr+rhilr

merge descends on the right

= right heavy nodes are bad

257

Towards the proof

Right heavy:
rh [r= (if || < |r| then 1 else 0)

Number of not right heavy nodes on right spine:
rih () =0
rth (I, ,ry=1—rhlr+rlhr

Lemma
2 < |B) + 1

Corollary
rih h < logsy ||y

256

Potential

The potential is the number of right heavy nodes:
®()=0

O = I+Pr+rhilr

merge descends on the right

= right heavy nodes are bad

Lemma
t-merge ty to + ® (merge ty &) — P tp — D ty
< Irh (merge t; t) + rlh t; + rlh ty + 1

257

Potential

The potential is the number of right heavy nodes:
® () =0

Ol _,n=l+Dr+rhir

merge descends on the right

—> right heavy nodes are bad

Lemma
t-merge t; to + ® (merge ty &) — Pt — D 1y
< Irh (merge t; t;) + rlh t; + rlh to + 1

by(induction t1 t2 rule: merge.induct) (auto)

Node-Node case

Let tl = <l1, ay, 7"1>, tQ = <lQ, o, ’I"Q>.
Case a1 < ay. Let m = merge tp 1

t.merge t; by + ® (merge ty) —) — P b

=tmergetor1 +1 +Pm+PL +rhmi
—dtH — Db

=tmergety 1 +1+Pm+rhml
—(I)Tl—?”hllﬁ—q)tg

<Ilrhm-+rihto+rilhry+rhml +2—rhiln
by IH

:lrhm—i-T’th2+rlht1+7’hmll+1

258

Node-Node case

Let tl = <Z1, ay, 7"1>, tQ = <ZQ./ ag, T'2>.

258

l\
m\

Node-Node case

Let tl = <ll, ay, 7’1>, tQ = <l2./ a9, T'2>.

258

Main proof

t.merge ty to + ® (merge ty &) — Pt — D 1y

< Irh (merge t; t;) + rlh t; + rlh t, + 1

< logy |merge t; 2|1 + logs |t1]|1 + loge |to]1 + 1

= 10g2 (|t1|1 + |t2|1 — 1) + IOgg |t1|1 + 10g2 |t2|1 + 1

259

Main proof

t-merge ty to + ® (merge ty &) — Pt — D 1y

< Irh (merge t; t;) + rlh t; + rlh t, + 1

< logy |merge t; ty]1 + logs |t|1 + logy |ta]1 + 1

= logy (|ta]1 + |1 — 1) + logy |t1]1 + loga [fo]1 + 1

S log2 (‘t1|1 + ‘t2|1) + 10g2 ‘t1|1 + 1Og2 ‘tg‘l + 1

S 10g2 (|t1|1 + |t2|1) + 2 % lOgQ (|t1|1 + |t2|1) + 1
because logy = + logy y < 2 * logy (z + y) if z,y > 0

=3 % logg (|t1|1 + |t2|1) + 1

259

Main proof

t.merge ty to + ® (merge ty &) — P tp — D 1y

< Irh (merge t; t) + rlh t; + rlh t, + 1

< logy |merge t; 2|1 + logs |11 + logs |f2]1 + 1

= lOgg (|t1|1 + |t2|1 — 1) + log2 |t1|1 + lOgg |t2|1 + 1

S 1Og2 (|t1|1 -+ |t2|1) + 1Og2 |t1|1 + 1Og2 |t2|1 + 1

< logo (|t1|1 + |t2|1) + 2 x logy (|t1|1 + |t2|1> + 1
because logs = + logs y < 2 x logs (z + y) if z,y > 0

259

insert and del_min

Easy consequences:

Lemma

tinsert a h + ® (insert a h) — ® h
< 3« logy (k) + 2) + 2

Lemma

t_del_min h + ® (del.min h) — ® h
S 3 * 10g2 (|h|1 —+ 2) + 2

260

Sources Sources

The inventors of skew heaps: The inventors of skew heaps:

Daniel Sleator and Robert Tarjan. Daniel Sleator and Robert Tarjan.

Self-adjusting Heaps. Self-adjusting Heaps.

SIAM J. Computing, 1986. SIAM J. Computing, 1986.
Sources

The inventors of skew heaps:

Daniel Sleator and Robert Tarjan.

Self-adjusting Heaps. @ Splay Tree
SIAM J. Computing, 1986.

The formalization is based on

Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew
Heaps. Information Processing Letters, 1991.

261 262

A splay tree is a self-adjusting binary search tree.

Definition (splay)

Become wider or more separated.

264 265

Definition (splay)

Become wider or more separated.

Example
The river splayed out into a delta.

Splay tree

Implementation type = binary tree

Key operation splay a:
@ Search for a ending up at
where = a or z is a leaf node.

265 267

Splay tree Splay tree
Implementation type = binary tree Implementation type = binary tree
Key operation splay a: Key operation splay a:
@ Search for a ending up at z @ Search for a ending up at z
where x = a or z is a leaf node. where £ = a or x is a leaf node.
® Move z to the root of the tree by rotations. @ Move z to the root of the tree by rotations.
Derived operations isin/insert/ delete a :
® splay a
@ Perform isin/insert/delete action

Q. . @ Q. .. @
oW [(5 oG
@A AQ AQ A\ /B\ /[C
[\ [p\ /o b\ A

269

Zig-zig and zig-zag Zig-zig

o ., @
Zig-zig # two single rotations A A
_ _ _ (8) O
Zig-zag = two single rotations
& Lo\ B o

271 269

Functional definition Zig-zig and zig-zag
[z < b; 2 < ¢; AB # ()]
— 9play z <<AB b, C), ¢, D) =
(case splay © AB of
splay :: 'a = 'a tree = 'a tree (4, a, B) = (4, a, (B, b, (C, ¢, D))))

Zig-zig and zig-zag

[z < b2 < ¢ AB # ()]
—> splay = ((AB, b, C), ¢, D) =
(case splay = AB of
(A, a, B) = (A, a, (B, b, (C, ¢, D))))

[z < ¢ ¢ < a; BC# ()]
— splay ¢ ((A, z, BC), a, D) =
(case splay ¢ BC of
(B, b, C) = ((A, z, B), b, (C, a, D)))

273

Some base cases

T < b= splay © ((A, z, B), b, C) = (A, z, (B, b, C))

274

Some base cases

T < b= splay z ((4, z, B), b, C) =

274

l\
m\

Some base cases

r < b= splay © ((A, =, B), b, C) = (A, z, (B, b, C))

r< g —
splay = (((), a, A), b, B) =

274

Functional correctness proofs

Automatic

2

2
a

Potential

Sum of logarithms of the size of all nodes:
o ()=0

S (Lan=2l+dr+e¢{ar
where ¢ ¢t = logs ([t| + 1)

278

Potential

Sum of logarithms of the size of all nodes:

278

Potential

Sum of logarithms of the size of all nodes:
o ()=0

S (Lan=2l+dr+¢(ar
where ¢ ¢t = logs (|t| + 1)

Amortized complexity of splay:

a_splay a t = tsplay a t + ® (splay a t) — &t

278

Analysis of splay Analysis of splay

Theorem Theorem

[bst t; (I, a, r) € subtrees {] [bst t, (I, a, r) € subtrees {]

= asplayat<3x(pt—p (la) +1 — asplayat<3x(pt—p (lar)+1

Analysis of splay Analysis of splay

Theorem Theorem

[bst t; (I, a,) € subtrees {] [bst t; (I, a, r) € subtrees {]

— asplayat<3x(pt—p (lar)+1 — asplayat<3x*(pt—p (lan)+1

Corollary Corollary

[bst t; a € set_tree] [bst t; a € set_tree]

= asplayat<3x(pt—1)+1 = asplayat<3x(pt—1)+1
Corollary

bstt = asplayat<3xpt+1

279 279

Analysis of splay
Theorem
[bst t; (I, a, r) € subtrees {]
= asplayat<3x(pt—p (la) +1
Corollary
[bst t; a € set_tree 1]
= asplayat<3x(pt—1)+1
Corollary
bstt = a_splayat<3*xpt+1

279

Analysis of splay

Theorem

[bst t; (I, a,) € subtrees {]

— asplayat<3x(pt—p (lar)+1
Corollary

[bst t; a € set_tree]

= asplayat<3x(pt—1)+1
Corollary

bstt = a_splayat <3 *xpt+1

279

Analysis of splay
Theorem
[bst t; (I, a, r) € subtrees {]
— asplayat<3x(pt—p (lar)+1
Corollary
[bst t; a € set_tree]
= asplayat<3x*x(pt—1)+1
Corollary
bstt = a_splayat<3*xpt+1
Lemma

[t # (); bst 1]

= Ja'eset_tree t.
splay o’ t = splay a t A t_splay a’ t = t_splay a

Analysis of splay

Theorem

[bst t; (I, a, r) € subtrees {]

— asplayat<3x(pt—p (lar)+1
Corollary

[bst t; a € set_tree]

= asplayat<3x(pt—1)+1
Corollary

bstt = asplayat<3xpt+1

Lemma

[t # {); bst 1]

— dad'eset_tree t.
splay o' t = splay a t N\ t_splay o' t = t_splay a tn

msert

Definition
msert x t =
(if ¢ = () then ((), =, ())
else case splay x t of
(l, a, vy = case cmp x a of
LT = (I, z, (), a, 1))
| EQ= (I o, 1)
| GT = ({1, a, (), 2,)

280

delete
Definition
delete v t =
(if £ = () then ()
else case splay x t of
(I, a, 1) =
if x=a
then if [= () then r
else case splay_max [of
(', m,) = (', m, 1)
else (1, a, 1))

281

sert

Definition
msert x t =
(if £ = () then ((), z, ())
else case splay x t of
(l, a, vy = case cmp z a of
LT = (I, z, ((), a, 1))
| EQ = (I, a, 7)
| GT= (L a, (), o 1)
Counting only the cost of splay:

Lemma
bst t =
tsplay at + ® (insert at) — Pt <4dx*xpt+ 2

280

delete
Definition
delete x t =
(if t = () then ()
else case splay x t of
(I, a, 1) =
ifz=a
then if [= () then r
else case splay_max | of
(', m, 'y = (', m, r)

else (I, a, 1))

Lemma

bst t =
t.delete a t + ® (delete at) — Pt < 6% p t+ 2

281

Remember

Amortized analysis is only correct for single threaded

uses of a data structure.

Otherwise:

let counter = 0;
bad = increment counter 2" — 1 times;
= incr bad,
= incer bad;
= incr bad;

1sin : 'a tree = 'a = bool

283

isin 'a tree = 'a = bool

Single threaded =—> isin t a eatsup t

isin = 'a tree = 'a = bool

Single threaded = isin t a eats up ¢

Otherwise:

let bad = build unbalanced splay tree;
_ = 1isin bad «;

= isin bad a;

_ = isin bad a;

283 283

Solution 1:

isin :: 'a tree = 'a = bool x 'a tree

Observer function returns new data structure:

Solution 2:
151 = splay; 1s_root

Client uses splay before calling is_root:
Definition
is_root :: 'a = 'a tree = bool

is_root z t = (case t of

() = False
| (I, a, 1) = z = a)

285

Solution 1:

isin :: 'a tree = 'a = bool X 'a tree

Observer function returns new data structure:

Definition
1sin t a =
(let t' = splay a t in (case t’ of
() = Fualse
| ([, z, 1) = a =z,
t'))
Solution 2:

1stn = splay; 1s_root

Client uses splay before calling is_root:
Definition
is_root :: 'a = 'a tree = bool

is_root x t = (case t of

() = Fulse
| (l, a, 1) = = a)

May call is_root _ ¢ multiple times (with the same ¢!)
because is_root takes constant time

285

181N,

Splay trees have an imperative flavour and are a bit
awkward to use in a purely functional language

286

Sources

The inventors of splay trees:

Daniel Sleator and Robert Tarjan.
Self-adjusting Binary Search Trees. J. ACM, 1985.

The formalization is based on

Berry Schoenmakers. A Systematic Analysis of Splaying.
Information Processing Letters, 1993.

287

Sources

The inventors of splay trees:

Daniel Sleator and Robert Tarjan.
Self-adjusting Binary Search Trees. J. ACM, 1985.

287

#® Pairing Heap

288

