Script generated by TTT

Title: FDS (19.07.2019)

Fri Jul 19 08:34:10 CEST 2019 Date:

Duration: 80:46 min

Pages: 75

Archive of Formal Proofs

https://www.isa-afp.org/entries/Amortized_ Complexity.shtml

merge

$$merge \langle \rangle \ h = h$$
$$merge \ h \ \langle \rangle = h$$

Swap subtrees when descending:

E1

merge

 $merge \; \langle \rangle \; h = h \\ merge \; h \; \langle \rangle = h$

Swap subtrees when descending:

$$\begin{array}{l} \textit{merge}\; (\langle l_1,\; a_1,\; r_1\rangle =: \; h_1)\; (\langle l_2,\; a_2,\; r_2\rangle =: \; h_2) = \\ (\text{if}\; a_1 \leq a_2 \; \text{then} \; \langle \textit{merge}\; h_2 \; r_1,\; a_1,\; l_1\rangle \\ \text{else}\; \langle \textit{merge}\; h_1 \; r_2,\; a_2,\; l_2\rangle) \end{array}$$

merge

Very similar to leftist heap but

Logarithmic amortized complexity

Towards the proof

$$rh\ l\ r=$$
 (if $|l|<|r|$ then 1 else 0)

e.

Towards the proof

Right heavy:

$$rh$$
 l $r = (if |l| < |r| then 1 else 0)$

Number of right heavy nodes on left spine:

$$lrh \langle \rangle = 0 lrh \langle l, _, r \rangle = rh l r + lrh l$$

■ €

Towards the proof

Right heavy:

Right heavy:

$$rh\ l\ r = (if\ |l| < |r|\ then\ 1\ else\ 0)$$

Number of right heavy nodes on left spine:

$$lrh \langle \rangle = 0$$

$$lrh \langle l, _, r \rangle = rh \ l \ r + lrh \ l$$

Lemma

$$2^{lrh\ h} \le |h| + 1$$

Towards the proof

Right heavy:

$$rh \ l \ r = (if \ |l| < |r| \ then \ 1 \ else \ 0)$$

Number of right heavy nodes on left spine:

$$lrh \langle \rangle = 0
lrh \langle l, _, r \rangle = rh l r + lrh l$$

Lemma

$$2^{lrh\ h} \le |h| + 1$$

Corollary

$$lrh \ h \le \log_2 |h|_1$$

Towards the proof

Right heavy:

$$rh l r = (if |l| < |r| then 1 else 0)$$

Number of not right heavy nodes on right spine:

$$rlh \langle \rangle = 0$$

 $rlh \langle l, ..., r \rangle = 1 - rh l r + rlh r$

Lemma

$$2^{rlh\ h} \le |h| + 1$$

Corollary

$$rlh \ h \leq \log_2 |h|_1$$

256

(4)

Potential

The potential is the number of right heavy nodes:

$$\Phi \langle \rangle = 0$$

$$\Phi \langle l, -, r \rangle = \Phi l + \Phi r + rh l r$$

 $\ensuremath{\mathit{merge}}$ descends on the right

⇒ right heavy nodes are bad

■ €

Potential

The potential is the number of right heavy nodes:

$$\Phi \langle \rangle = 0$$

$$\Phi \langle l, -, r \rangle = \Phi l + \Phi r + rh l r$$

 $\it merge$ descends on the right

⇒ right heavy nodes are bad

Lemma

$$t_{-}merge \ t_1 \ t_2 + \Phi \ (merge \ t_1 \ t_2) - \Phi \ t_1 - \Phi \ t_2 \\ \leq lrh \ (merge \ t_1 \ t_2) + rlh \ t_1 + rlh \ t_2 + 1$$

E

Potential

The potential is the number of right heavy nodes:

$$\Phi \langle \rangle = 0$$

$$\Phi (\vec{l}, -, r) = \Phi l + \Phi r + rh l r$$

 $\ensuremath{\mathit{merge}}$ descends on the right

⇒ right heavy nodes are bad

Lemma

$$t_{-}merge \ t_1 \ t_2 + \Phi \ (merge \ t_1 \ t_2) - \Phi \ t_1 - \Phi \ t_2 \le lrh \ (merge \ t_1 \ t_2) + rlh \ t_1 + rlh \ t_2 + 1$$

by(induction t1 t2 rule: merge.induct)(auto)

43.1

Node-Node case

Let $t_1 = \langle l_1, a_1, r_1 \rangle, t_2 = \langle l_2, a_2, r_2 \rangle.$

25

•

Node-Node case

Let
$$t_1 = \langle l_1, a_1, r_1 \rangle$$
, $t_2 = \langle l_2, a_2, r_2 \rangle$.
Case $a_1 \leq a_2$. Let $m = merge \ t_2 \ r_1$

$$t_merge \ t_1 \ t_2 + \Phi \ (merge \ t_1 \ t_2) - \Phi \ t_1 - \Phi \ t_2$$

= $t_merge \ t_2 \ r_1 + 1 + \Phi \ m + \Phi \ l_1 + rh \ m \ l_1$

$$-\Phi t_1 - \Phi t_2$$

$$= \textit{t_merge} \ \textit{t}_2 \ \textit{r}_1 \, + \, 1 \, + \, \Phi \ \textit{m} \, + \, \textit{rh} \ \textit{m} \ \textit{l}_1$$

$$-\Phi r_1 - rh l_1 r_1 - \Phi t_2$$

$$\leq lrh \ m + rlh \ t_2 + rlh \ r_1 + rh \ m \ l_1 + 2 - rh \ l_1 \ r_1$$

$$= lrh \ m + rlh \ t_2 + rlh \ t_1 + rh \ m \ l_1 + 1$$

•

Node-Node case

Let
$$t_1 = \langle l_1, a_1, r_1 \rangle, t_2 = \langle l_2, a_2, r_2 \rangle.$$

1 0

Main proof

$$\begin{array}{l} t_{-}merge \ t_{1} \ t_{2} + \Phi \ (merge \ t_{1} \ t_{2}) - \Phi \ t_{1} - \Phi \ t_{2} \\ \leq lrh \ (merge \ t_{1} \ t_{2}) + rlh \ t_{1} + rlh \ t_{2} + 1 \\ \leq \log_{2} |merge \ t_{1} \ t_{2}|_{1} + \log_{2} |t_{1}|_{1} + \log_{2} |t_{2}|_{1} + 1 \\ = \log_{2} \ (|t_{1}|_{1} + |t_{2}|_{1} - 1) + \log_{2} |t_{1}|_{1} + \log_{2} |t_{2}|_{1} + 1 \end{array}$$

(1)

Main proof

$$\begin{array}{l} t_merge \ t_1 \ t_2 + \Phi \ (merge \ t_1 \ t_2) - \Phi \ t_1 - \Phi \ t_2 \\ \leq lrh \ (merge \ t_1 \ t_2) + rlh \ t_1 + rlh \ t_2 + 1 \\ \leq \log_2 \ |merge \ t_1 \ t_2|_1 + \log_2 \ |t_1|_1 + \log_2 \ |t_2|_1 + 1 \\ = \log_2 \ (|t_1|_1 + |t_2|_1 - 1) + \log_2 \ |t_1|_1 + \log_2 \ |t_2|_1 + 1 \\ \leq \log_2 \ (|t_1|_1 + |t_2|_1) + \log_2 \ |t_1|_1 + \log_2 \ |t_2|_1 + 1 \\ \leq \log_2 \ (|t_1|_1 + |t_2|_1) + 2 * \log_2 \ (|t_1|_1 + |t_2|_1) + 1 \\ \text{because} \ \log_2 \ x + \log_2 \ y \leq 2 * \log_2 \ (x + y) \ \text{if} \ x, y > 0 \end{array}$$

050

9 0

Main proof

```
\begin{array}{l} t\_merge \ t_1 \ t_2 + \Phi \ (merge \ t_1 \ t_2) - \Phi \ t_1 - \Phi \ t_2 \\ \leq lrh \ (merge \ t_1 \ t_2) + rlh \ t_1 + rlh \ t_2 + 1 \\ \leq \log_2 \ |merge \ t_1 \ t_2|_1 + \log_2 \ |t_1|_1 + \log_2 \ |t_2|_1 + 1 \\ = \log_2 \ (|t_1|_1 + |t_2|_1 - 1) + \log_2 \ |t_1|_1 + \log_2 \ |t_2|_1 + 1 \\ \leq \log_2 \ (|t_1|_1 + |t_2|_1) + \log_2 \ |t_1|_1 + \log_2 \ |t_2|_1 + 1 \\ \leq \log_2 \ (|t_1|_1 + |t_2|_1) + 2 * \log_2 \ (|t_1|_1 + |t_2|_1) + 1 \\ \text{because} \ \log_2 \ x + \log_2 \ y \leq 2 * \log_2 \ (x + y) \ \text{if} \ x, y > 0 \\ = 3 * \log_2 \ (|t_1|_1 + |t_2|_1) + 1 \end{array}
```

(

insert and del_min

Easy consequences:

Lemma

$$t$$
_insert $a h + \Phi (insert a h) - \Phi h$
 $\leq 3 * \log_2 (|h|_1 + 2) + 2$

Lemma

$$t_del_min \ h + \Phi \ (del_min \ h) - \Phi \ h$$

$$\leq 3 * \log_2 (|h|_1 + 2) + 2$$

The inventors of skew heaps: Daniel Sleator and Robert Tarjan. Self-adjusting Heaps. SIAM J. Computing, 1986.

Sources

Sources

The inventors of skew heaps: Daniel Sleator and Robert Tarjan. Self-adjusting Heaps. SIAM J. Computing, 1986.

261

Sources

The inventors of skew heaps: Daniel Sleator and Robert Tarjan. Self-adjusting Heaps. SIAM J. Computing, 1986.

The formalization is based on Anne Kaldewaij and Berry Schoenmakers. The Derivation of a Tighter Bound for Top-down Skew Heaps. *Information Processing Letters*, 1991.

Amortized Complexity

21 Skew Heap

Splay Tree

Pairing Heap

More Verified Data Structures and Algorithms (in Isabelle/HOL)

262

(

Splay tree

Implementation type = binary tree

Key operation *splay a*:

- Search for a ending up at x where x = a or x is a leaf node.
- f 2 Move x to the root of the tree by rotations.

Splay tree

Implementation type = binary tree

Key operation *splay a*:

- Search for a ending up at x where x = a or x is a leaf node.
- $oldsymbol{o}$ Move x to the root of the tree by rotations.

 \rightsquigarrow

Derived operations isin/insert/delete a:

- splay a
- $oldsymbol{2}$ Perform isin/insert/delete action

267

• •

Zig-zig

Zig-zag

Zig-zig and zig-zag

Zig- $zig \neq two single rotations$

Zig-zag = two single rotations

Zig-zig

269

9

Functional definition

 $splay :: 'a \Rightarrow 'a tree \Rightarrow 'a tree$

1 0

Zig-zig and zig-zag

E

Zig-zig and zig-zag

Some base cases

$$x < b \Longrightarrow splay \ x \langle \langle A, x, B \rangle, b, C \rangle =$$

274

•

Some base cases

$$x < b \Longrightarrow splay \ x \langle \langle A, x, B \rangle, b, C \rangle = \langle A, x, \langle B, b, C \rangle \rangle$$

Some base cases

$$x < b \Longrightarrow splay \ x \langle \langle A, x, B \rangle, b, C \rangle = \langle A, x, \langle B, b, C \rangle \rangle$$

$$x < a \Longrightarrow splay \ x \langle \langle \langle \rangle, \ a, \ A \rangle, \ b, \ B \rangle =$$

(4)

Potential

Sum of logarithms of the size of all nodes:

270

(

Potential

Sum of logarithms of the size of all nodes:

$$\Phi \langle \rangle = 0$$

$$\Phi \langle l, a, r \rangle = \Phi l + \Phi r + \varphi \langle l, a, r \rangle$$

where φ $t = \log_2 (|t| + 1)$

Potential

Sum of logarithms of the size of all nodes:

$$\Phi \langle \rangle = 0$$

$$\Phi \ \langle l, a, r \rangle = \Phi \ l + \Phi \ r + \varphi \ \langle l, a, r \rangle$$

where
$$\varphi$$
 $t = \log_2(|t| + 1)$

Amortized complexity of splay:

$$a_splay \ a \ t = t_splay \ a \ t + \Phi \ (splay \ a \ t) - \Phi \ t$$

Analysis of splay

Theorem

```
[bst t; \langle l, a, r \rangle \in subtrees t]

\implies a\_splay \ a \ t \le 3 * (\varphi \ t - \varphi \ \langle l, a, r \rangle) + 1
```

Analysis of splay

Theorem

```
[bst t; \langle l, a, r \rangle \in subtrees t]

\implies a\_splay \ a \ t \le 3 * (\varphi \ t - \varphi \ \langle l, a, r \rangle) + 1
```

279

Analysis of splay

Theorem

 $[\![bst\ t;\ \langle l,\ a,\ r\rangle \in subtrees\ t]\!] \\ \Longrightarrow a_splay\ a\ t \leq 3*(\varphi\ t-\varphi\ \langle l,\ a,\ r\rangle) + 1$ Corollary

 $[bst\ t;\ a\in set_tree\ t]$

$$\implies a_splay \ a \ t \leq 3 * (\varphi \ t - 1) + 1$$

•

Analysis of splay

Theorem

 $[bst \ t; \langle l, \ a, \ r \rangle \in subtrees \ t]$ $\implies a_splay \ a \ t \le 3 * (\varphi \ t - \varphi \ \langle l, \ a, \ r \rangle) + 1$

Corollary

 $[bst \ t; \ a \in set_tree \ t]$ $\implies a_splay \ a \ t \le 3 * (\varphi \ t - 1) + 1$

Corollary

 $bst\ t \Longrightarrow a_splay\ a\ t \le 3 * \varphi\ t + 1$

(

Analysis of splay

Theorem

```
[bst t; \langle l, a, r \rangle \in subtrees t]

\implies a\_splay \ a \ t \le 3 * (\varphi \ t - \varphi \ \langle l, a, r \rangle) + 1
```

Corollary

Corollary

 $bst\ t \Longrightarrow a_splay\ a\ t \leq 3 * \varphi\ t + 1$

Analysis of splay

Theorem

```
[bst \ t; \langle l, \ a, \ r \rangle \in subtrees \ t]
\implies a\_splay \ a \ t \le 3 * (\varphi \ t - \varphi \ \langle l, \ a, \ r \rangle) + 1
```

Corollary

```
[bst \ t; \ a \in set\_tree \ t]
\implies a\_splay \ a \ t \le 3 * (\varphi \ t - 1) + 1
```

Corollary

 $bst\ t \Longrightarrow a_splay\ a\ t \le 3 * \varphi\ t + 1$

Lemma

 $[t \neq \langle \rangle; bst t] \\ \Longrightarrow \exists a' \in set_tree t.$

 $splay \ a' \ t = splay \ a \ t \wedge t_splay \ a' \ t = t_splay \ a \ t_{79}$

Analysis of splay

Analysis of splay

Theorem

 $[bst \ t; \langle l, \ a, \ r \rangle \in subtrees \ t]$ $\implies a_splay \ a \ t \le 3 * (\varphi \ t - \varphi \ \langle l, \ a, \ r \rangle) + 1$

Corollary

 $[bst \ t; \ a \in set_tree \ t]$ $\implies a_splay \ a \ t \le 3 * (\varphi \ t - 1) + 1$

Corollary

 $bst \ t \Longrightarrow a_splay \ a \ t \leq 3 * \varphi \ t + 1$

Theorem

 $[bst \ t; \langle l, a, r \rangle \in subtrees \ t]$ $\implies a_splay \ a \ t \le 3 * (\varphi \ t - \varphi \ \langle l, a, r \rangle) + 1$

Corollary

Corollary

 $bst \ t \Longrightarrow a_splay \ a \ t \leq 3 * \varphi \ t + 1$

Lemma

 $[t \neq \langle \rangle; bst t] \\ \Longrightarrow \exists a' \in set_tree t.$

 $splay \ a' \ t = splay \ a \ t \wedge t_splay \ a' \ t = t_splay \ a \ t_{279}$

```
insert
Definition
insert \ x \ t = 
(if \ t = \langle \rangle \ then \ \langle \langle \rangle, \ x, \ \langle \rangle \rangle 
else case splay \ x \ t of
\langle l, \ a, \ r \rangle \Rightarrow case \ cmp \ x \ a \ of
LT \Rightarrow \langle l, \ x, \ \langle \langle \rangle, \ a, \ r \rangle \rangle
| EQ \Rightarrow \langle l, \ a, \ r \rangle
| GT \Rightarrow \langle \langle l, \ a, \ \langle \rangle \rangle, \ x, \ r \rangle \rangle
```

```
insert
Definition
insert \ x \ t =
(if \ t = \langle\rangle \ then \ \langle\langle\rangle, \ x, \ \langle\rangle\rangle
else \ case \ splay \ x \ t \ of
\langle l, \ a, \ r\rangle \Rightarrow case \ cmp \ x \ a \ of
LT \Rightarrow \langle l, \ x, \ \langle\langle\rangle, \ a, \ r\rangle\rangle
| \ EQ \Rightarrow \langle l, \ a, \ r\rangle
| \ GT \Rightarrow \langle\langle l, \ a, \ \langle\rangle\rangle, \ x, \ r\rangle\rangle
Counting only the cost of splay:
Lemma
bst \ t \Longrightarrow
t\_splay \ a \ t + \Phi \ (insert \ a \ t) - \Phi \ t \le 4 * \varphi \ t + 2
```

Definition $delete \ x \ t = \\ (\text{if } t = \langle \rangle \text{ then } \langle \rangle \\ \text{else case } splay \ x \ t \text{ of} \\ \langle l, \ a, \ r \rangle \Rightarrow \\ \text{if } x = a \\ \text{then if } l = \langle \rangle \text{ then } r \\ \text{else case } splay_max \ l \text{ of} \\ \langle l', \ m, \ r' \rangle \Rightarrow \langle l', \ m, \ r \rangle \\ \text{else } \langle l, \ a, \ r \rangle)$

Definition $delete \ x \ t = \\ (\text{if } t = \langle \rangle \text{ then } \langle \rangle \\ \text{else case } splay \ x \ t \text{ of } \\ \langle l, \ a, \ r \rangle \Rightarrow \\ \text{if } x = a \\ \text{then if } l = \langle \rangle \text{ then } r \\ \text{else case } splay_max \ l \text{ of } \\ \langle l', \ m, \ r' \rangle \Rightarrow \langle l', \ m, \ r \rangle \\ \text{else } \langle l, \ a, \ r \rangle)$ $\text{Lemma} \\ bst \ t \Longrightarrow \\ t_delete \ a \ t + \Phi \ (delete \ a \ t) - \Phi \ t \leq 6 * \varphi \ t + 2 \\ \ \ _{281}$

Remember

Amortized analysis is only correct for single threaded uses of a data structure.

Otherwise:

 $isin :: 'a tree \Rightarrow 'a \Rightarrow bool$

28

Q

```
isin :: 'a tree \Rightarrow 'a \Rightarrow bool
```

Single threaded $\implies isin \ t \ a$ eats up t

```
isin :: 'a tree \Rightarrow 'a \Rightarrow bool
```

Single threaded $\implies isin \ t \ a$ eats up t

Otherwise:

Solution 1:

 $isin :: 'a tree \Rightarrow 'a \Rightarrow bool \times 'a tree$

Observer function returns new data structure.

Solution 1:

 $isin :: 'a tree \Rightarrow 'a \Rightarrow bool \times 'a tree$

Observer function returns new data structure:

Definition

$$\begin{array}{l} isin \ t \ a = \\ (\text{let } t' = splay \ a \ t \ \text{in } (\text{case } t' \ \text{of} \\ \qquad \qquad \langle \rangle \Rightarrow False \\ \qquad \qquad | \ \langle l, \ x, \ r \rangle \Rightarrow a = x, \\ \qquad \qquad t')) \end{array}$$

Solution 2:

 $isin = splay; is_root$

Client uses *splay* before calling *is_root*:

Definition

Solution 2:

 $isin = splay; is_root$

Client uses *splay* before calling *is_root*:

Definition

May call $is_root _t$ multiple times (with the same t!) because *is_root* takes constant time

