Script generated by TTT

- Title: Seidl: Functional Programming and Verification (26.10.2018)
- Fri Oct 26 08:22:10 CEST 2018 Date:
- Duration: 85:19 min
- Pages: 14

Example

```
public class GCD {
public static void main (String[] args) {
int x, y, a, b;a = read(); x = a;
b = read(); y = b;
while (x := y)if (x > y) x = x - y;else
              y = y - x;assert(x == y);write(x);
```
} // End of definition of main();

 \mathcal{F} // End of definition of class GCD;

 $\overline{7}$

... in the GCD Program (1) :

assignment: $x = x-y;$ post-condition: \overline{A} weakest pre-condition:

$$
A[x - y/x] \equiv \gcd(a, b) = \gcd(x - y, y)
$$

$$
\equiv \gcd(a, b) = \gcd(x, y)
$$

$$
\equiv A
$$

General Principle

- Every assignment transforms a post-condition B into a minimal \bullet assumption that must be valid before the execution so that B is valid after the execution.
- In case of an assignment $x = e$; the weakest pre-condition is given by

$$
\mathbf{WP}[\![\mathbf{x} = \mathbf{e}; \!] \!] \!] \!] (B) \equiv B[e/x]
$$

This means: we simply substitute everywhere in B , x by e !!!

An arbitrary pre-condition A for a statement s is valid, \bullet whenever

$$
A \Rightarrow \mathbf{WP}[\![s]\!](B)
$$

 $//$ A implies the weakest pre-condition for B.

... in the GCD Program (1):

\nasignment:

\n

$x = x - y$;	Every assignment transforms a post-condition	B into a minimal assumption that must be valid before the execution so that B is valid after the execution.
$A[x - y/x] \equiv \text{gcd}(a, b) = \text{gcd}(x - y, y)$	gcd(a, b) = \text{gcd}(x, y)	
$= A$	28	

Wrap-up

Wrap-up

Discussion

- For all actions, the wrap-up provides the corresponding weakest \bullet pre-conditions for a post-condition B .
- An output statement does not change any variable. Therefore, the \bullet weakest pre-condition is B itself.
- An input statement $x = read()$; modifies the variable x \bullet unpredictably.

In order B to hold after the input, B must hold for every possible x before the input.

The argument for the assertion before the loop is analogous:

 $b \equiv y \neq x$ $\neg b \wedge B \equiv B$ $b \wedge A \equiv A \wedge x \neq y$

 $A \equiv (A \wedge x = y) \vee (A \wedge x \neq y)$ is the weakest precondition for the conditional branching.

49

35

Orientation

Summary of the Approach

- Annotate each program point with an assertion. \bullet
- Program start should receive annotation true. ϵ
- Verify for each statement s between two assertions A and B, \bullet that A implies the weakest pre-condition of s for B i.e.,

$A \Rightarrow \mathbf{WP}[\![s]\!](B)$

Verify for each conditional branching with condition b , whether the \bullet assertion A before the condition implies the weakest pre-condition for the post-conditions B_0 and B_1 of the branching, i.e.,

 $A \Rightarrow \mathbf{WP}[[b]] (B_0, B_1)$

An annotation with the last two properties is called locally consistent.

Recap (2)

- An execution trace π traverses a path in the control-flow graph. \bullet
- It starts in a program point u_0 with an initial state σ_0 and \bullet leads to a program point u_m with a final state σ_m .
- Every step of the execution trace performs an action and (possibly) changes program point and state.
	- The trace π can be represented as a sequence \implies

$(u_0, \sigma_0)s_1(u_1, \sigma_1)\ldots s_m(u_m, \sigma_m)$

where s_i are elements of the control-flow graph, i.e., basic statements or conditions (guards) ...

Theorem

Let p be a MiniJava program, let π be an execution trace starting in program point u and leading to program point v .

Assumptions:

- The program points in p are annotated by assertions which are locally consistent.
- The program point u is annotated with A. \bullet
- The program point \overline{v} is annotated with B .

Conclusion:

If the initial state of π satisfies the assertion A, then the final state satisfies the assertion B .

62

58

Remarks

- If the start point of the program is annotated with true, then every execution trace reaching program point v satisfies the assertion at v .
- In order to prove that an assertion A holds at a program point \bullet v , we require a locally consistent annotation satisfying:
	- (1) The start point is annotated with true.
	- The assertion at v implies A. (2)