Script generated by TTT

Title: Seidl: Functional Programming and
Verification (07.12.2018)

Date: Fri Dec 07 08:44:42 CET 2018
Duration: 76:45 min

Pages: 17

Some of the Simplest Polymorphic Functions

let compose f g x = f (g x)
let twice f x = £ (f %)
let iter f g x = if g x then x else iter f g (f x);;

val compose : (’a -> ’b) -> (P°c -> ’a) -> ’c -> ’b = <fun>
val twice : (Pa -> ’a) -> ’a -> ’a = <fun>
val iter : (’a -> ’a) -> (’a -> bool) -> ’a -> ’a = <fun>

compose neg neg;;

- : bool -> bool = <fun>

compose neg neg true;;

- : bool = true;;

compose Char.chr plus2 65;;
- : char = °C?

203

— If a functional is applied to a function that is itself polymorphic,
the result may again be polymorphic:

let cons_r Xs X = X::XS;;

val cons_r : ’a list -> ’a -> ’a list = <fun>
let rev 1 = fold_left cons_r [] 1;;

val rev : ’a list -> ’a list = <fun>

rev [1;2;3];;

- & int list = [3; 2; 1]

rev [true;false;false];;

- : bool list = [false; false; true]

202

Some of the Simplest Polymorphic Functions

let compose f g x
let twice f x =
let iter f g x

val compose : —> ’b) -> (Pc -> ’a) -

val twice : (Pa -> ’a) -> ’a -> ’a = <fun>
val iter : (’a -> ’a) -> (’a -> bool) -> ’a -> ’a = <fun>

’b = <fun>

compose neg neg;;

- : bool -> bool = <fun>

compose neg neg true;;

- : bool = true;;

compose Char.chr plus2 65;;
- : char = ’C’

203

C(Q/(\Lﬂ fre. T

3.5 Polymorphic Datatypes

o
? 2 o

User-defined datatypes may be polymorphic as well:

%tree
de . tree ‘a tree)

— tree is called type constructor, because it allows to create a new

type from another type, namely its parameter ’a.

— In the right-hand side, only those type variables mya occur, which
have been listed on the left.

— The application of constructors to data may instantiate type
variables:

204

let rec size = function
Leaf -> 1

| Node(t,t’) -> size t + size t’

let rec flatten = function
Leaf x -> [x]
| Node(t,t’) -> flatten t @ flatten t~’

let flattenl t = let rec doit = function

(Leaf x, xs) -> x :: Xs

| (Node(t,t?), xs) -> let xs = |[doit (t’,xs)

inl doit (t,xs)

in doit (t,[1)

206

Discussion

e The operator @ concatenates two lists.
e The implementation is very simple.
e Extraction is cheap.

e Insertion, however, requires as many calls of @ as the queue has
elements.

e Can that be improved upon 77

212

Second Idea (cont.)

e Insertion is in the second list:

let enqueue x (Queue (first,last)) =
Queue (first, x::last)
e Extracted are elements always from the first list:

Only if that is empty, the second list is consulted ...

let dequeue = function
Queue ([],last) -> (match List.rev last
with [] -> (None, Queue ([],[]1))
| x::xs -> (Some x, Queue (xs,[])))
| Queue (x::xs,last) -> (Some x, Queue (xs,last))

215

Discussion

e Now, insertion is cheap!

e Extraction, however, can be as expensive as the number of
elements in the second list ...

e Averaged over the number of insertions, however, the extra costs

are only constant !l

== amortized cost analysis

216

Discussion

e Now, insertion is cheap!

e Extraction, however, can be as expensive as the number of
elements in the second list ...

e Averaged over the number of insertions, however, the extra costs

are only constant !!!

=== amortized cost analysis

216

3.7 Anonymous Functions

As we have seen, functions are data. Data, e.g., [1;2;3] can be used
without naming them. This is also possible for functions:
fun x y z -> x+y+z;;
- : int -> int -> int -> int = <fun>
e fun initiates an abstraction.
This notion originates in the A-calculus.

e > hastheeffect of = in function definitions.

e Recursive functions cannot be defined in this way, as the recurrent

occurrences in their bodies require names for reference.

Ny >k (£9)

e Pattern matching can be used by applying match ... with
for the corresponding argument.

e Incase of a single argument, function can be considered ...

function None -> 0
| Some x -> x*x+1;;
- : int option -> int = <fun>

219

3.7 Anonymous Functions

As we have seen, functions are data. Data, e.g., [1;2;3] can be used
without naming them. This is also possible for functions:
fun x y z -> x+y+z;;
- : int -> int -> int -> int = <fun>
e fun initiates an abstraction.
This notion originates in the A-calculus.

e -> hastheeffect of = in function definitions.

e Recursive functions cannot be defined in this way, as the recurrent

occurrences in their bodies require names for reference.

Alonzo Church, 1903-1995

218 217
Pattern matching can be used by applying match ... with Anonymous functions are convenient if they are used just once in a
for the corresponding argument. program. Often, they occur as arguments to functionals:

In case of a single argument, function can be considered ...
map (fun x -> x*x) [1;2;3];;

- : int list = [1; 4; 9]

function None -> 0
| Some X -> x*x+1:: Often, they are also used for returning functions as result:
3

- : int option -> int = <fun>
let make_undefined () = fun x -> None;;

val make_undefined : unit -> ’a -> ’b option = <fun>

let def_one (x,y) = fun x’ -> if x=x’ then Some y
else None;;

val def_one : ’a * ’b -> ’a -> ’b option = <fun>

@% a"*\LQV/?)W X = Qf’* -

219 220

5.1 Exceptions

In case of a runtime error, e.g., division by zero, the Ocaml system

generates an exception:

#1/ 0;;

Exception: Division_by_zero.
List.tl (List.tl [1]);;
Exception: Failure "t1".

Char.chr 300;;

Exception: Invalid_argument "Char.chr".

Here, the exceptions Division_by_zero, Failure "t1~

Invalid_argument “Char.chr” are generated.

267

and

Another reason for an exception is an incomplete match:

match 1+1 with 0 -> "null";;

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
1

Exception: Match_failure ("", 2, -9).

In this case, the exception Match_failure ("7, 2, -9) s
generated.

268

