Script generated by TTT

Title: Seidl: Functional Programming and
Verification (01.02.2019)

Date: Fri Feb 01 08:42:43 CET 2019

Duration: 71:34 min

Pages: 22

-115‘759: v .

DL::muuus

Side Pane

Example: A global memory cell e

0 General P
Rotate Right

A global memory cell, in particular in presence of multiple threads, | me:
be realized by implementing the signature Cell: Z::::;:BGE

Last Page

Contents of this lecture nodule type Cell = sig 2o

type ’a cell

Inverted Colors

val new_cell : ’a -> ’a cell

C ectness Oi P Og ams Reload
° orr n I ram
val g et : ’a ce -> ’a

e Functional programming with OCaml val put : ’a cell -> ’a -> unit

end

The implementation must take care that the get and put calls are
sequentialized.

376

gy % |®|[E] 2 | 3| 4 | Bttt : evince — Konsole [folien

Example: Locks

Often, only one at a time out of several active threads should be allowed
access to a given resource. In order to realize such a mutual exclusion,
locks can be applied:

module type Lock = sig
type lock

type ack @‘z
val new_lock : unit -> lockA ? C /@
val acquire : @ f ‘/7‘/

val release :

end

Execution of the operation acquire returns an element of type
ack which is used to return the lock:

type ack = unit channel

type lock = ack channel

For simplicity, ack is chosen itself as the channel by which the lock

is returned.

let acquire lock = let ack = new_channel ()

in @(send lock ack);
ac

383

The unlock channel is created by acquire itself
let release id‘:f_ﬁﬁ_(MLQL
... and used by the operation release.
let new_lock () = let lock = new_channel ()

in let rec acq_server () = CtC'L

rel_serven/«{sync (receive lock))

and rel_server/acky=
sync (receive ack);
acq_server ()

in create w();

lock

384

Core of the implementation are the two mutually recursive functions
acq_server and rel_server.

acq_server expects an element ack, i.e., a channel, and upon

reception, calls rel_server.

rel_server expects a signal on the received channel indicated that the
lock is released ...

Now we are in the position to realize a decent deadlock:

let dead = let 11 = new_lock ()
—_——
in let 12 = new_lock ()

385

ldea

Again, a server is realized using an accumulating parameter, now
maintaining the number of free resources or, if negative, the number of

waiting threads ...

module Sema = struct open Thread open Event

type sema = unit channel option channel

let up sema = sync (send sema None)

B e g
let down sema = let ack = (new_channel() : unit channel)

in sync (send sema (Some ack));

sync (receive ack)
A

388

ldea

Again, a server is realized using an accumulating parameter, now
maintaining the number of free resources or, if negative, the number of

waiting threads ...

module Sema = struct open Thread open Event

type sema = unit channel option channel

let up sema = sync (send sema None)

let down sema = let ack = (new_channel() : unit channel)
in sync (send sema (Some ack));

sync (receive ack)

388

let new_sema n = let sema = new_channel ()
in let rec serve (n,q) =
match sync (receive sema)
with None -> (match degueue q
EWPLV with (_Iggrfﬁ) -> serve Eil,q)
| (Some ack,q) -> sync (send ack ());
serve (n,&)
| Some ack -> if n>0 then (sync (send ack
- serve (n-1,9))

else serve (n, enqueue ack q)
S—— e

in create serve (n,new_queue()); sema

end

Apparently, the queue does not maintain the waiting threads, but only

their back channels.

389

ldea

Again, a server is realized using an accumulating parameter, now
maintaining the number of free resources or, if negative, the number of

waiting threads ...

module Sema = struct open Thread open Event
type sema = unit channel option channel

let up sema = sync (send sema None)

let down sema = let ack =_(new channel() : unit channel)

in sync (send sema (Some ack));

sync (receive ack)

388

féx/f)e P = /(ra(ﬁpﬁ’ééﬂ"“MI Pel

let new_sema n = let sema = new_channel ()
in let rec serve (n,q) =
match sync (receive sema)
with NoHZ‘?i_?EEEZE_EZEEZue q
—
with (None,q) -> serve (n+1,q)
| (Some ack,q) -> sync (send ack ());
serve (n,q))
| Some ack -> if n>0 then (sync (send ack ());
— serve (n-1,q))
else serve (n, enqueue ack q)
in create serve (n,new_queue()); sema

end

Apparently, the queue does not maintain the waiting threads, but only
their back channels.

389

8.2 Selective Communication

A thread need not necessarily know which of several possible
communication rendezvous will occur or will occur first.

Required is a non-deterministic choice between several actions ...

Example: The function

add : int channel * int channel * int channel -> unit
e ——— T B EEEE——— S —

is meant to read integers from two channels and send their sum to the
third.

390

let copy (in, outl, out2) = forever (fun () ->
let x = sync (receive in)
oS APEReSVE
in select [
—
wrap (send outl x)

(fun () -> sync (send out2 x));

wrap (send out2 x)
—_————

(fun () -> sync (send outl x))

]
) O

Apparently, the event list may also consist of send events — or contain
both kinds.

type ’a cell = ’a channel * ’a channel

396

let get (get_chan,_) = sync (receive get_chan)

let put (_,put_chan) x = sync (send put_chan x)
—_— T T —

let new_cell x = let get_chan = new_channel ()

in let put_chan = new_channel

in let serve x = select

wrap (send get_chan x) (fun () -> serve(x?;

wrap (receive put_chan) serve
— Phittaihd

. \j\

create serve Xx;

(get_chan, put_chan)
———

397

o — The leaves are basic events.
let get (get_chan,_) = sync (receive get_chan)
let put (_,put_chan) x = sync (send put_chan x) — A wrapper function may be applied to any given event.
let new_cell x = let get_chan = new_channel () — Several events of the same type may be combined into a choice.
in let put_chan = new_channel () — Synchronization on such an event tree activates a single leaf
in let serve x = select [event. The result is obtained by successively applying the wrapper
wrap (send get_chan x) (fun () -> serve x); functions from the path to the root.
wrap (receive put_chan) serve
]
in
create serve x;
(get_chan, put_chan)
397 399
Example: A Swap Channel Timeouts

Upon rendezvous, a swap channel is meant to exchange the values of the
two participating threads. The signature is given by

module type Swap = sig
type ’a swap
- -
val new_swap : unit -> ’a swap

val swaj : ’a swap -> _’a -> ’a event
P P .
end

In the implementation with ordinary channels, every participating thread
must offer the possibility to receive and to send.

400

Often, our patience is not endless.

Then, waiting for a send or receive event should be terminated ...

module type Timer = sig

set_timer : float -> unit event

timed_receive : ’a channel -> float -> ’a option event
——

— - - i
timed_send : ’a channel -> ’a -> float -> unit option event
d—- ____—_.—. —_— — ?

en

403

module Timer = stuct open Thread open Event

let set_timer t = let ack = new_channel ()

in let serve () = delay t;

sﬁmirmmﬂejjifi>
in create serve (); send ack ()

< e R——

let timed ceive ch time = choose [
ZROPse L
wrap (receive ch) (fun a -> Some a);
M

wrap (set_timer time) ??un () -> None)
A=

] p—— —_

N

let timed_send ch x time = choose [
—_———_—-— - —

wrap ggggg_gg_z) (fun a -> Some ());

wrap (set_timer time) (fun () -> None)
—)

end

404

... yields

> /.a.out

Thread 1 killed on uncaught exception Division_by_zero
main terminated regularly ...

The thread was killed, the Ocaml| program terminated nontheless.

Also, uncaught exceptions within the wrapper function terminate the
running thread:

module ExplodeWrap = struct open Thread open Event open Timer
let main = try sync (wrap (set_timer 1.0) (fun OO -> 1 / 0))
with _ -> 0;
print_string "... this is the end!\n"
end

406

8.3 Threads and Exceptions

An exception must be handled within the thread where it has been
raised.

module Explode = struct open Thread
let thread x = (x / 0);

print_string "thread terminated regularly ...\n"
let main = create thread 0; delay 1.0;

print_string "main terminated regularly ...\n"
end

405

