Script generated by TTT

Title: Seidl: Functional Programming and
Verification (08.02.2019)

8.3 Threads and Exceptions
An exception must be handled within the thread where it has been
raised.

module Explode = struct open Thread
let thread x = (x / 0);

Date: Fri Feb 08 08:29:31 CET 2019 print_string "thread terminated regularly ...\n"
let main = create thread 0; delay 1.0;

Duration: 67:30 min print_string "main terminated regularly ...\n"
end

Pages: 16

405
... yields Then we have
> /.a.out

Thread 1 killed on uncaught exception Division_by_zero

main terminated regularly ...

The thread was killed, the Ocam| program terminated nonetheless.

Also, uncaught exceptions within the wrapper function terminate the
running thread:

module ExplodeWrap = struct open Thread open Event open Timer
let main = try sync (wrap (set_timer 1.0) (fun OO -> 1/ 0))
with _ -> 0;
print_string "... this is the end!\n"

end

406

> ./a.out

Fatal error: exception Division_by_zero

Caveat

Exceptions can only be caught in the body of the wrapper function itself,
not behind the sync !

407

8.4 Buffered Communication

A channel for buffered communication allows to send without blocking,.
Receiving still may block, if no messages are available. For such

channels, we realize a module Mailbox:

module type Mailbox = sig
type ’a mbox
val new_mailbox : unit -> ’a mbox
val send : ’a mbox -> ’a -> unit
val receive : ’a mbox -> ’a event

end

For the implementation, we rely on a server which maintains a queue of
sent but not yet received messages.

408

Then we implement:

module Mailbox =
struct open Thread open Queue open Event

type ’a mbox = ’a channel * ’a channel

let send (in_chan,_) x = sync (send in_chan x)
let receive (_,out_chan) = receive out_chan
let new_mailbox () = let in_chan = new_channel ()

and out_chan = new_channel ()

409

if let rec|serve gq|= if (is_empty q) then
serve (enqueue (
sync (Event.receive in_chan)) q)
else select [
wrap (Event.receive in_chan)
(fun y -> serve (enqueue y q));
wrap (Event.send out_chan (first q))
(fun () -> let (_,q) = dequeue q

in serve q)

]

in create serve (new_queue ());
(in_chan, out_chan)

end

.. where first : ’a queue -> ’a returns the first element in the

queue without removing it.

410

\M«:\/ 20 A

in let rec serve q = if (is_empty q) then
serve (enqueue (
sync (Event.receive in_chan)) q)
else select [
wrap (Event.receive in_chan)
(fun y -> serve (enqueue y q));
wrap (Event.send ou i))
(fun let (_,q) = dequeue q

in serve q)

]
in create serve (new_queue ());
(in_chan, out_chan)

end

.. where first : ’a queue -> ’a returns the first element in the

queue without removing it.

410

\A""‘q/ 20 A

in let rec serve q = if (is_empty q) then
serve (enqueue (
sync (Event.receive in_chan)) q)
else select [
wrap (Event.receive in_chan)

(fun y -> serve (enqueue y q));

wrap (Event.send ou t q))

(fun let (_,q) = dequeue q

in serve q)

]
in create serve (new_queue ());
(in_chan, out_chan)

end

.. where first : ’a queue -> ’a returns the first element in the

queue without removing it.

410

[/ {
Wgéneral,ct}wereecoc{l\ld\é a @f evegts:q ;_5 ér)

{

‘ receive cl ‘ ‘ receive c2 ‘

398

in let rec serve q = if (is_empty q) then
serve (enqueue (
sync (Event.receive in_chan)) q)
else select [
wrap (Event.receive in_chan)
(fun y -> serve (enqueue y q));
wrap (Event.send out_chan (first q))
(fun () -> let (_,q) = dequeue q
in serve q)
]
in create serve (new_queue ());
(in_chan, out_chan)

end

.. where first : ’a queue -> ’a returns the first element in the

queue without removing it.

410

8.5 Multicasts

For sending a message to many receivers, a module Multicast is
provided that implements the signature Multicast:

module type Multicast = sig
type ’a mchannel and ’a port
val new_mchannel : unit -> ’a mchannel
val new_port ’a mchannel -> ’a port
val multicast ’a mchannel -> ’a -> unit

val receive ’a port -> ’a event

The operation new_port generates a fresh port where a message
can be received.

The (non-blocking) operation multicast sends to all registered
ports.

module Multicast = struct open Thread open Event
modu “F Mailbox
type ’a port = ’a M.mbox

type ’a mchannel = ’a channel * ’a port channel

let new_port (_, req) = let m = M.new_mailbox() in

sync (send req m); m

end
let m icast (send_ch,_) x = syn send send_ch x)
le box a~nmbox
411 412
let main = let mc = new_mchannel () Summary
in let thread i = let p = new_port mc

in while true do let x = sync (receive p) e The programming language Ocaml offers convenient possibilities to

in print_int i; print_string ": "; orchestrate concurrent programs.

3 3 -~ n
print_string (x~"\n'") e Channels with synchronous communicatino allow to simulate other
done L
concepts of concurrency such as asynchronous communication,
in create thread 1; create thread 2; . .
global variables, locks for mutual exclusion and semaphors.
create thread 3; delay 1.0; .
multicast mc "Hallot": e Concurrent functional programs can be as obfuscated and
malticast me “WOrld;“f incomprehensible and concurrent Java programs.
multicast mc "... the end."; e Methods are required in order to systematically verify the
delay 10.0 correctnﬂ of such programs ...
end S
end
416 418

Perspectives

e Beyond the language concepts discussed in the lecture, Ocaml has
diverse further concepts, which also enable object oriented
programming.

e Moreover, Ocaml| has elegant means to access functionality of the
operating system, to employ graphical libraries and to communicate

with other computers ...

— Ocaml is an interesting alternative to Java.

419

