Script generated by TTT

Täubig: GAD (09.07.2013) Title:

Date: Tue Jul 09 14:15:34 CEST 2013

Duration: 91:07 min

Pages: 54

Kürzeste Wege

Kürzeste Wege

Zentrale Frage: Wie kommt man am schnellsten von A nach B?

Übersicht

Graphen

- Netzwerke und Graphen
- Graphrepräsentation
- Graphtraversierung
- Kürzeste Wege
- Minimale Spannbäume

H. Täubig (TUM)

Kürzeste Wege

Kürzeste Wege

Kürzeste Wege

Zentrale Frage: Wie kommt man am schnellsten von A nach B?

Fälle:

- Kantenkosten 1
- DAG, beliebige Kantenkosten
- beliebiger Graph, positive Kantenkosten
- beliebiger Graph, beliebige Kantenkosten

H. Täubig (TUM)

Kürzeste-Wege-Problem

gegeben:

- gerichteter Graph G = (V, E)
- Kantenkosten $c: E \mapsto \mathbb{R}$

2 Varianten:

- SSSP (single source shortest paths):
 kürzeste Wege von einer Quelle zu allen anderen Knoten
- APSP (all pairs shortest paths):
 kürzeste Wege zwischen allen Paaren

 4 □ ▷ 4 ∰ ▷ 4 ≧ ▷ 4 ≧ ▷ ½
 ♦ 9 ○ ○

 GAD
 SS'13
 499 / 646

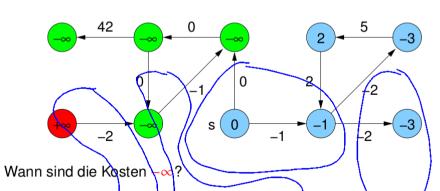
Graphen

Kürzeste Wege

Distanzen

H. Täubig (TUM)

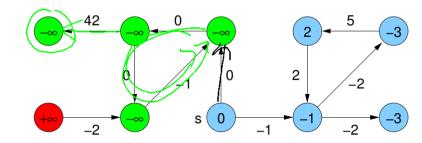
H. Täubig (TUM)



wenn es einen Kreis mit negativer Gewichtssumme gibt (hinreichende und notwendige Bedingung)

4 □ ▷ 4 □ ▷ 4 □ ▷ 4 □ ▷ 4 □ ▷ 4 □ ○ Q (~

Distanzen



Kürzeste Wege

 $\mu(s, v)$: Distanz von s nach v

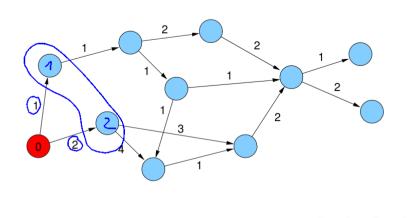
$$\mu(s,v) = \left\{ \begin{array}{ll} +\infty & \text{kein Weg von } s \text{ nach } v \\ -\infty & \text{Weg beliebig kleiner Kosten von } s \text{ nach } v \\ \min\{c(p): p \text{ ist Weg von } s \text{ nach } v\} \end{array} \right.$$

Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Einfache Breitensuche funktioniert nicht.



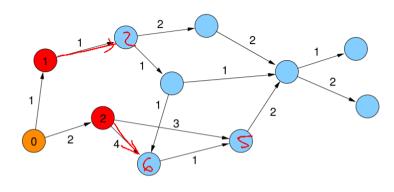
Graphen 🔣

Cürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Einfache Breitensuche funktioniert nicht.



H. Tāubig (TUM) GAD SS'13 504 / 646

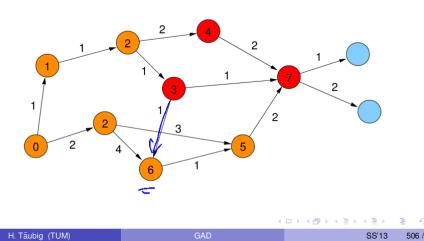
Graphen

Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

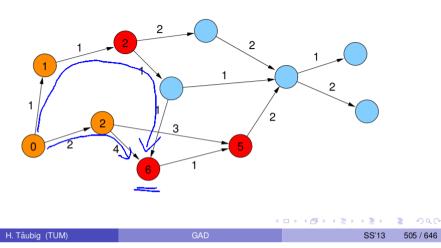
Einfache Breitensuche funktioniert nicht.



Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Einfache Breitensuche funktioniert nicht.



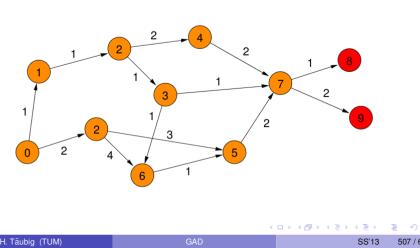
Kürzeste Wege

Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Einfache Breitensuche funktioniert nicht.



Grapher

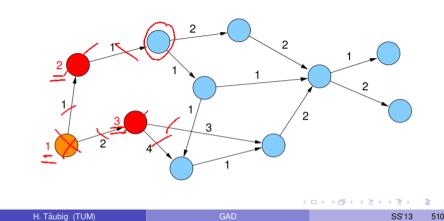
(ürzeste Wege

Topologische Sortierung in DAGs

Beliebige Kantengewichte in DAGs

Strategie: in DAGs gibt es topologische Sortierung

(für alle Kanten e=(v,w) gilt topoNum(v) < topoNum(w))



Graphen

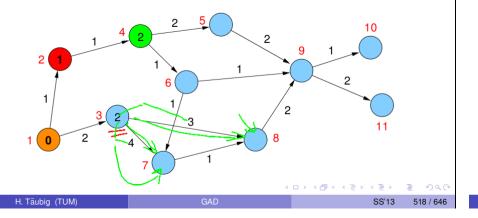
Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Strategie:

- betrachte Knoten in Reihenfolge der topologischen Sortierung
- aktualisiere Distanzwerte



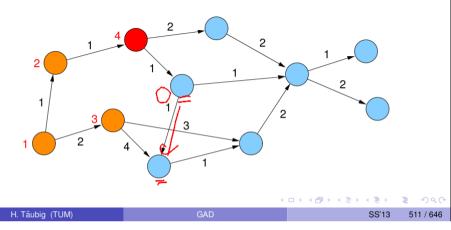
Graphen Kürzeste We

Topologische Sortierung in DAGs

Beliebige Kantengewichte in DAGs

Strategie: in DAGs gibt es topologische Sortierung

(für alle Kanten e=(v,w) gilt topoNum(v) < topo<math>Num(w))



Graphen

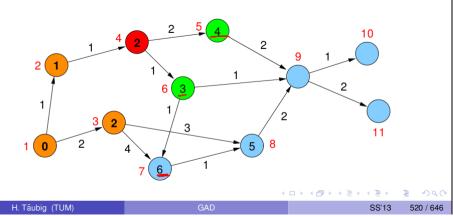
Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Strategie:

- betrachte Knoten in Reihenfolge der topologischen Sortierung
- aktualisiere Distanzwerte



Graphen

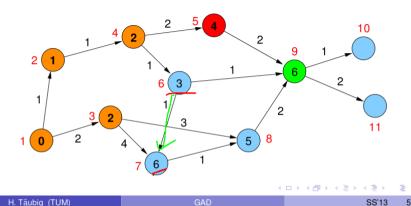
irzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Strategie:

- betrachte Knoten in Reihenfolge der topologischen Sortierung
- aktualisiere Distanzwerte



Graphen

Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Topologische Sortierung – warum funktioniert das?

- betrachte einen kürzesten Weg von s nach v
- der ganze Pfad beachtet die topologische Sortierung
- d.h., die Distanzen werden in der Reihenfolge der Knoten vom Anfang des Pfades zum Ende hin betrachtet
- damit ergibt sich für v der richtige Distanzwert
- ein Knoten x kann auch nie einen Wert erhalten, der echt kleiner als seine Distanz zu s ist
- die Kantenfolge von s zu x, die jeweils zu den Distanzwerten an den Knoten geführt hat, wäre dann ein kürzerer Pfad (Widerspruch)

Graphen

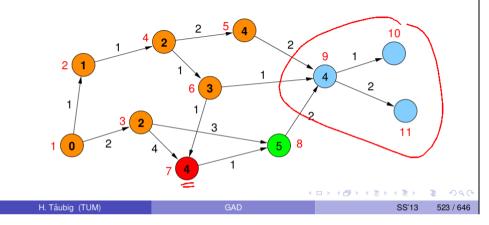
Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Strategie:

- betrachte Knoten in Reihenfolge der topologischen Sortierung
- aktualisiere Distanzwerte



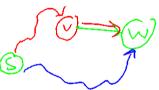
Graphen

Kürzeste Wege

Kürzeste Wege in DAGs

Beliebige Kantengewichte in DAGs

Allgemeine Strategie:



- Anfang: setze $\underline{d(s)} = \underline{0}$ und für alle anderen Knoten v setze $\underline{d(v)} = \infty$
- besuche Knoten in einer Reihenfolge, die sicherstellt, dass mindestens ein kürzester Weg von s zu jedem v in der Reihenfolge seiner Knoten besucht wird
- für jeden besuchten Knoten v aktualisiere die Distanzen der Knoten w mit $(v, w) \in E$, d.h. setze

$$d(w) = \min\{d(w), d(v) + c(v, w)\}$$

(ロ) (目) (目) (目) (日) (ロ)

H. Täubig (TUM) GAD SS'13 528/646

H. Täubig (TUM)

GAD

SS'13 529 / 6

Kürzeste Wege in DAGs

Topologische Sortierung

- verwende FIFO-Queue q
- verwalte für jeden Knoten einen Zähler für die noch nicht markierten eingehenden Kanten
- initialisiere q mit allen Knoten, die keine eingehende Kante haben (Quellen)
- nimm nächsten Knoten v aus q und markiere alle $(v, w) \in E$, d.h. dekrementiere Zähler für w
- falls der Zähler von w dabei Null wird, füge w in q ein
- wiederhole das, bis q leer wird

<ロ > ∢回 > ∢直 > ∢直 > ■ り Q G H. Täubig (TUM)

Kürzeste Wege

Kürzeste Wege in DAGs

DAG-Strategie

- Topologische Sortierung der Knoten Laufzeit O(n+m)
- Aktualisierung der Distanzen gemäß der topologischen Sortierung Laufzeit O(n+m)

Gesamtlaufzeit: O(n+m)

Kürzeste Wege

Kürzeste Wege in DAGs

Topologische Sortierung

Korrektheit

 Knoten wird erst dann nummeriert, wenn alle Vorgänger nummeriert sind

Laufzeit

- für die Anfangswerte der Zähler muss der Graph einmal traversiert werden O(n+m)
- danach wird jede Kante genau einmal betrachtet
- \Rightarrow gesamt: O(n+m)

Test auf DAG-Eigenschaft

- topologische Sortierung erfasst genau dann alle Knoten, wenn der Graph ein DAG ist
- bei gerichteten Kreisen erhalten diese Knoten keine Nummer

H. Täubig (TUM)

Beliebige Graphen mit nicht-negativen Gewichten

Gegeben:

- beliebiger Graph (gerichtet oder ungerichtet, muss diesmal kein DAG sein)
- mit nicht-negativen Kantengewichten
- \Rightarrow keine Knoten mit Distanz $-\infty$

Problem:

- besuche Knoten eines kürzesten Weges in der richtigen Reihenfolge
- wie bei Breitensuche, jedoch diesmal auch mit Distanzen ≠ 1

Lösung:

 besuche Knoten in der Reihenfolge der kürzesten Distanz zum Startknoten s

Kürzeste Pfade: SSSP / Dijkstra

Dijkstra-Algorithmus

 $P = \emptyset$: T = V:

Input: $G = (V, E), c: E \to \mathbb{R}, s \in V$ **Output**: Distanzen d(s, v) zu allen $v \in V$

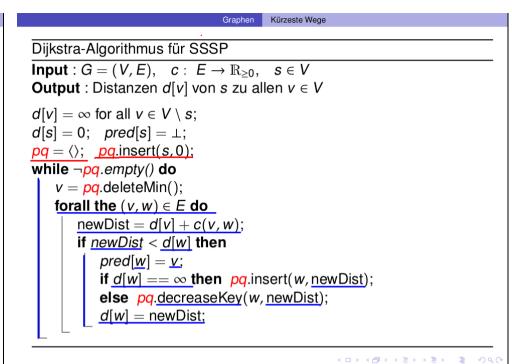
```
d(s, v) = \infty for all v \in V \setminus s;
d(s,s) = 0: pred(s) = \bot:
while P \neq V do
     v = \operatorname{argmin}_{v \in T} \{d(s, v)\};
     P = P \cup v; \overline{T} = T \setminus v;
    for all the (v, w) \in E do
         if d(s, w) > \underline{d(s, v)} + c(v, w) then
              d(s,w)=d(s,v)+c(v,w);
              pred(w) = v;
```

(口) (個) (達) (達) (達)

H. Täubig (TUM)

Dijkstra-Algorithmus

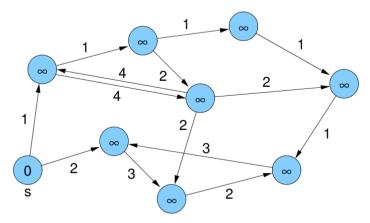
- setze Startwert d(s, s) = 0 und zunächst $d(s, v) = \infty$
- verwende Prioritätswarteschlange, um die Knoten zusammen mit ihren aktuellen Distanzen zuspeichern
- am Anfang nur Startknoten (mit Distanz 0) in Priority Queue
- dann immer nächsten Knoten v (mit kleinster Distanz) entnehmen, endgültige Distanz dieses Knotens v steht nun fest
- betrachte alle Nachbarn von v. füge sie ggf. in die PQ ein bzw. aktualisiere deren Priorität in der PQ

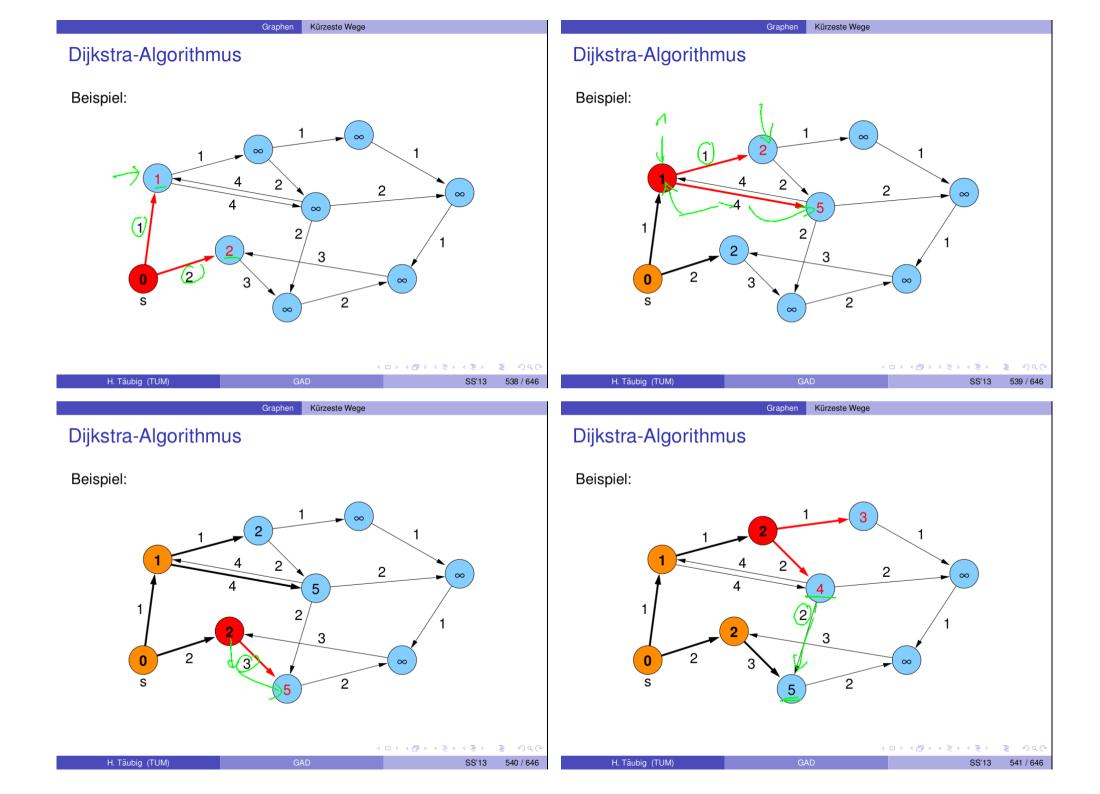


Kürzeste Wege

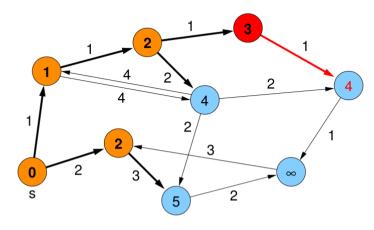
Dijkstra-Algorithmus

Beispiel:





Beispiel:



H. Täubig (TUM) GAD SS'13 542 / 646

Graphen

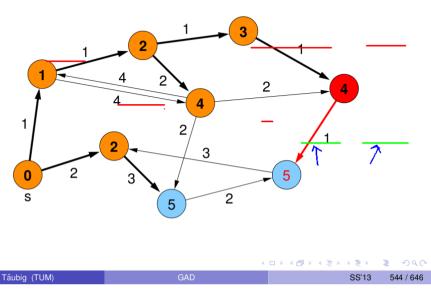
Kürzeste Wege

Dijkstra-Algorithmus

- Annahme: Algorithmus liefert für w einen zu großen Wert d(s, w)
- sei w der Knoten mit der kleinsten (wirklichen) Distanz, für den der Wert d(s, w) falsch festgelegt wird (wenn es davon mehrere gibt, der Knoten, für den die Distanz zuletzt festgelegt wird)
- kann nicht sein, weil d(s, w) immer aktualisiert wird, wenn man über einen von s schon erreichten Knoten v mit Distanz d(s, v) den Knoten w über die Kante (v, w) mit Distanz d(s, v) + c(v, w) erreichen kann (dabei steht d(s, v) immer schon fest, so dass auch die Länge eines kürzesten Wegs über v zu w richtig berechnet wird)
- d.h., entweder wurde auch der Wert von v falsch berechnet (Widerspruch zur Def. von w) oder die Distanz von v wurde noch nicht festgesetzt
- weil die berechneten Distanzwerte monoton wachsen, kann letzteres nur passieren, wenn v die gleiche Distanz hat wie w (auch Widerspruch zur Def. von w)

Dijkstra-Algorithmus

Beispiel:



Kürzeste Wege

Kürzeste Wege

Dijkstra-Algorithmus

- Datenstruktur: Prioritätswarteschlange
 (z.B. Fibonacci Heap: amortisierte Komplexität <u>O(1) für insert</u>
 und decreaseKey, <u>O(log n)</u> deleteMin)
- Komplexität:
 - ▶ $n \times O(1)$ insert
 - ▶ $n \times O(\log n)$ deleteMin
 - $\rightarrow m \times O(1)$ decreaseKey
 - $\Rightarrow \overline{O(m+n\log n)}$
- aber: nur für nichtnegative Kantengewichte(!)

4□ > 4Ē > 4Ē > 4Ē > ₹ 900

H. Täubig (TUM) GAD SS'13

H. Täubig (TUM)

GAD

55 13 550 / 641

Monotone Priority Queues

Beobachtung:

 aktuelles Distanz-Minimum der verbleibenden Knoten ist beim Dijkstra-Algorithmus monoton wachsend

Monotone Priority Queue

- Folge der entnommenen Elemente hat monoton steigende Werte
- effizientere Implementierung möglich, falls Kantengewichte ganzzahlig

Annahme: alle Kantengewichte im Bereich [0, C]

Konsequenz für Dijkstra-Algorithmus:

 \Rightarrow enthaltene Distanzwerte immer im Bereich [d, d + C]

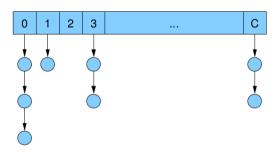
Graphen

irzeste Wege

Bucket Queue

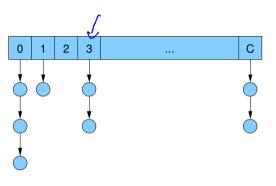
H. Täubig (TUM)

- jeder Knoten v mit aktueller Distanz d[v]
 in Liste B[d[v] mod (C + 1)]
- alle Knoten in Liste B[d] haben <u>dieselbe Distanz</u>, weil alle aktuellen Distanzen im Bereich [d, d + C] liegen



Bucket Queue

- Array B aus C + 1 Listen
- Variable d_{min} für aktuelles Distanzminimum mod(C+1)



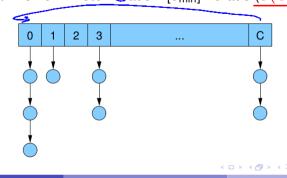
H. Täubig (TUM)

GAD

SS'13 552 / 6

Bucket Queue / Operationen

- insert(v): fügt v in Liste $B[d[v] \mod (C+1)]$ ein O(1)
- decreaseKey(v): entfernt v aus momentaner Liste
 (O(1) falls Handle auf Listenelement in v gespeichert) und fügt v in Liste B[d[v] mod (C + 1)] ein (O(1))
- deleteMin(): solange $B[d_{\min}] = \emptyset$, setze $\underline{d_{\min}} = (d_{\min} + 1) \mod (C + 1)$. Nimm dann einen Knoten waus $B[d_{\min}]$ heraus O(C)



Graphen

irzeste Wege

Dijkstra mit Bucket Queue

• insert, decreaseKey: O(1)

• deleteMin: O(C)

H. Täubig (TUM)

• Dijkstra: $O(m + C \cdot n)$

• lässt sich mit Radix Heaps noch verbessern

• verwendet exponentiell wachsende Bucket-Größen

Details in der Vorlesung <u>Effiziente Algorithmen und</u>
 Datenstrukturen

• Laufzeit ist dann $O(m + n \log C)$

 4 □ > 4 ∅ > 4 ₺ > 4 ₺ > ₺ ₺ ○ ₺ ○ ○

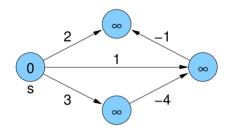
 SS'13
 555 / 646

Graphen

Kürzeste Wege

Beliebige Graphen mit beliebigen Gewichten

Gegenbeispiel für Dijkstra-Algorithmus:



Graphen Kürze

Beliebige Graphen mit beliebigen Gewichten

Gegeben:

- beliebiger Graph mit beliebigen Kantengewichten
- ⇒ Anhängen einer Kante an einen Weg kann zur Verkürzung des Weges (Kantengewichtssumme) führen (wenn Kante negatives Gewicht hat)
- ⇒ es kann negative Kreise und Knoten mit Distanz -∞ geben

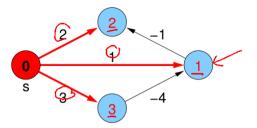
Problem:

- besuche Knoten eines kürzesten Weges in der richtigen Reihenfolge
- Dijkstra kann nicht mehr verwendet werden, weil Knoten nicht unbedingt in der Reihenfolge der kürzesten Distanz zum Startknoten s besucht werden

irzeste Wea

Beliebige Graphen mit beliebigen Gewichten

Gegenbeispiel für Dijkstra-Algorithmus:

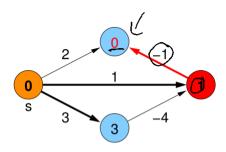


Grapher

ürzeste Wege

Beliebige Graphen mit beliebigen Gewichten

Gegenbeispiel für Dijkstra-Algorithmus:



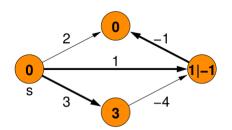
H. Täubig (TUM) GAD SS'13 559 / 646

Graphen

Kürzeste Wege

Beliebige Graphen mit beliebigen Gewichten

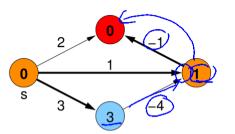
Gegenbeispiel für Dijkstra-Algorithmus:



Graphen Kürzeste Wege

Beliebige Graphen mit beliebigen Gewichten

Gegenbeispiel für Dijkstra-Algorithmus:



Täubig (TUM) GAD

Viimaata Maa

Beliebige Graphen mit beliebigen Gewichten

Lemma

Für jeden von s erreichbaren Knoten v mit $d(s, v) > -\infty$ gibt es einen einfachen Pfad (ohne Kreis) von s nach v der Länge d(s, v).

Beweis.

Betrachte kürzesten Weg mit Kreis(en):

- Kreis mit Kantengewichtssumme > 0 nicht enthalten: Entfernen des Kreises würde Kosten verringern
- Kreis mit Kantengewichtssumme = 0:
 Entfernen des Kreises lässt Kosten unverändert
- Kreis mit Kantengewichtssumme < 0: Distanz von s ist -∞

.,

Graphen

ürzeste Wege

Bellman-Ford-Algorithmus

Folgerung

In einem Graph mit n Knoten gibt es für jeden erreichbaren Knoten v mit $d(s, v) > -\infty$ einen kürzesten Weg bestehend aus < n Kanten zwischen s und v.

Strategie:

- anstatt kürzeste Pfade in Reihenfolge wachsender Gewichtssumme zu berechnen, betrachte sie in Reihenfolge steigender Kantenanzahl
- durchlaufe (n-1)-mal alle Kanten im Graph und aktualisiere die Distanz
- dann alle kürzesten Wege berücksichtigt

4 □ ▷ ◀ □ ▷ ◀ □ ▷ ▼ ○ Q ○
 SS'13 565 / 646

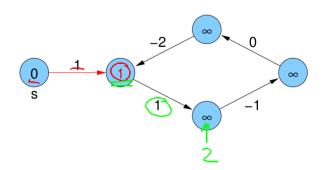
Graphen

Kürzeste Wege

Bellman-Ford-Algorithmus

H. Täubig (TUM)

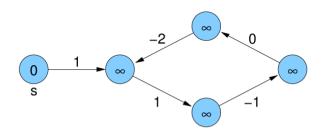
Problem: Erkennung negativer Kreise



Graphen Kürzeste

Bellman-Ford-Algorithmus

Problem: Erkennung negativer Kreise



GAD

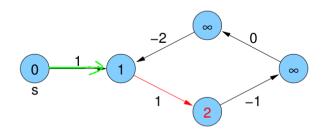
Graphen

Kürzeste Wege

Bellman-Ford-Algorithmus

H. Täubig (TUM

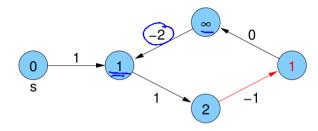
Problem: Erkennung negativer Kreise



Graphen Kürzeste Wege

Bellman-Ford-Algorithmus

Problem: Erkennung negativer Kreise



GAD SS'13 569 / 646

Graphen

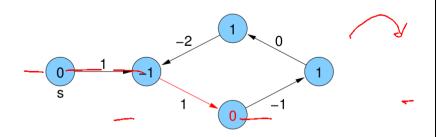
Kürzeste Wege

Bellman-Ford-Algorithmus

H. Täubig (TUM)

H. Täubig (TUM)

Problem: Erkennung negativer Kreise



Graphen Kürzeste Wege

Bellman-Ford-Algorithmus

Problem: Erkennung negativer Kreise

