Script generated by TTT

Seidl: Programmoptimierung (28.11.2012)

Wed Nov 28 09:35:33 CET 2012

Duration: 87:03 min

57

Evaluation starts with an interesting unknown z; (e.g., the
value at stop)

Then automatically all unknowns are evaluated which influence
T)

The number of evaluations is often smaller than during worklist
iteration :-)

The algorithm is more complex but does not rely on
pre-computation of variable dependencies :-))

It also works if variable dependencies during iteration change !!!

— interprocedural analysis

420

solve x5 eval 2 T3 eval oz, solve xy eval x g,

solve xy eval &y x3 solve x3
I[xa] = {z1}
{a.c)
D[z1] = {a, c}
I =9
solve x3 eval 3 77 solve x
I[x1] = {z3}
{o.c}
Ixzs] = {x1, 22}
{a, e}
419

— Evaluation starts with an interesting unknown z; (e.g., the
value at stop)

— Then automatically all unknowns are evaluated which influence
x; i)

— The number of evaluations is often smaller than during worklist

iteration :-)

— The algorithm is more complex but does not rely on
pre-computation of variable dependencies :-))

— It also works if variable dependencies during iteration change !!!

— interprocedural analysis

420

1.7 Eliminating Partial Redundancies Goal:

Example:

// x+1 isevaluated on every path

// onone path, however, even twice :-(

421 422

Goal:
Idea:

(1) Insert assignments 7, = e: such that e is available at all points

where the value of ¢ is|required.

(2) Thereby spare program points where e either is already available
or will definitely be computed in future.

Expressions with the latter property are called very busy.

(3) Replace the original evaluations of ¢ by accesses to the variable T...

- we require a novel analysis :-))

423 422

An expression e is called busy along a path 7, if the expression ¢
is evaluated before any of the variables = & Vars(e) is overwritten.
Idea:

// backward analysis!

(1) Insert assignments T, = ¢; such that ¢ is available at all points

where the value of e is required.) . .
e 1iscalled very busy at w,if e is busy along every path

(2) Thereby spare program points where e either is already available Tiu—* stop .

or will definitely be computed in future.
Expressions with the latter property are called very busy.

(3) Replace the original evaluations of e by accesses to the variable 7.

— we require a novel analysis :-))

423 424

An expression e s called busy along a path 7, if the expression

is evaluated before any of the variables z € Vars(e) is overwriten. .
Our complete lattice is given by:

. _ oHzpr\ Vars o
// backward analysis! B=2 with © = 2

The effect [k]* of anedge k= (u,lab,v) onlydependson lab,
e iscalled very busy at = ,if e isbusy along every path ie, [k]f =[lab]* where:
T u —* stop .

LIF B = B
Accordingly, we require: [Pos(e)]f B = [Neg(e)] B — BU{e}
Blu] = m{[H] O|7:u—"stop} [x=e]*B = (B\Ezpr,)u{e}
where for 7w =1ky ... ky [=M[]*B = (B\Ezpr,)U{e}
Ml =P B = BU{er,e)

[r]* = [k o...o [kl

425 426

Our complete lattice is given by:

B = 2w\ Vars with T = D

The effect [k]* ofanedge k= (u,lab,v) only dependson lab,
e, [k]*=[lab]* where:

L} B = B

[Pos(e)]* B = [Ney(e)]* B = Buie}
[r=e]"B = (B\Ezpr,)U e}

[0 =Me]*B = (B\Ezpr,)U{e}

Ml = el B = BU{er, e}

& T,e 2, =3 \/‘RJ'D

426

xOva U6

Our complete lattice is given by:

B = i Vars with C = 2

The effect [k]* ofanedge & = (u,lab,v) only dependson lab
e, [k]* = [lab]* where:

LJF B = B

[Pos(e)]t B = [Neg(e))* B = Bu{e}
[r=e]'B = (B\Expr,)U{e}

[z =Me]!B = (B\Ezpr,)U{e}
[Mle)] = ex]* B = Bu{ey, e}

426

These effects are all distributive. Thus, the least solution of the constraint
system yields precisely the MOP — given that stop is reachable from
every program point = :-)

Example:

6 [{y1 +u2}
5| {x+1}
4| {z+1}
3| {z+1}
2| {z+1}

427

5/3/

A point wu is called safe for ¢, if e e Afu] U Bu] e is
either available or very busy.

[dea:

e We insert computations of e suchthat e becomes available at
all safe program points :-)

e Weinsert 7. = ¢; after every edge (u, lab, v) with

= B[z‘]\[[]ul’;]lil(A[u] J B[H])

428

Transformation 5.1: Transformation 5.2:

() (w) —~ —
7 7))
4, lab — y fab ¢ = e ﬁ ¢ =T,
() @) Y Y
P -/) O O
Te=e; (e€ B[i']\ﬂiab]]A (Alu] U Blu]))
o
N
O // analogously for the other uses of e
S ¢ To=e: (c€Bl]) // atold edges of the program
@ —) () ’
429 430
Transformation 5.2:
N
)
¢ —) ¢ r @
N
N
// analogously for the other uses of ¢
/! at old edges of the program.

Bernhard Steffen, Dortmund Jens Knoop, Wien

430 431

In the Example:

In the Example:

® [a4 | s ® L[4 | =
; 0 1] [‘: 1)/ ‘73) 0 [[0]
) B e @ S S U A R
(2 1] {r+1} E\.g:'\\ /}!: 2 1] {w+1}
3 0 {x+1} 62 3 1] {r+1}
N 4 {z+1} {z+1} .l = 4| {r+1} | {z+1}
=+ 5 0 {r+1} \i‘:© 5 0 {x+1}
6 {z+1} {y1 + w2}) 61 {z+1} | {v1 ty2}
7T {z+1,y1+ua} [T {r+1} [0]
432 433
In the Example: Im Example:
@T=%+a [| 4 | B] O L[4 [s
o ® 4= [0 L souw g o] 0
= Ml | jun==s 1] 0 0 Ju- 10 0
TEXen@ ©® 2| 0 {r+1} yT=z+1 _® 20 0 {z+1}
N @
5) T 3 0 {z+1} — =0 3 3 0 {z+1}
LI T 4 {e+1} | {x+1} ,. d{{z+1}] {=+1}
()] - (6) -
¢ Miz] =y +1) [{z+1} l Ma] = y1 + 5] {w+1}
f 6 {o+1} | {m +ua} @ /F) 6| {o+1} | {m +ue}
7| {z+1}] 7| {z+1}]
o

433

Im Example:

(3]

te+1}
{z+1}
{e1}] {=+1}
oy 5 {z+1}
6 {z+1} | {1t}
{z+1} [}

e
Il
—

S ls|les|ls|l
=

| w

o
=

434

Let 7 denote apathreaching v after which a computation of an
edge with e follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]" (A[u] U Blu])

Let 7 denote a path reaching o after which a computation of an
edge with e follows.

Then there is a maximal suffix of 7 such that for every edge
k= (u,lab,v') in the suffix:

e € [lab]% (Alu] U Blu])

In particular, no variable in e receives a new value :-)

Then T, =e; isinserted before the suffix :-))
A | A | |
Ao

436

Let = denote a path reaching v after which a computation of an
edge with e follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]%(A[u] U Blu])

AvB AvB AvB AVB

[= b= =
/ _—y N N N/

435

Correctness:

Let 7 denote a path reaching v after which a computation of an
edge with ¢ follows. We conclude:
Then there is a maximal suffix of 7 such that for every edge
k= (u,lab,v') in the suffix:
e € [lab]’y (Alu] U Blu]) e Whenever the value of ¢ isrequired, e isavailable :-)
— correctness of the transformation
In particular, no variable in ¢ receives a new value :-)

Then T, — e isinserted before the suffix) e Every T = ¢; which is inserted 1.nt0 a path corresponds to an
which is replaced with 7' =)

| | | { O — non-degradation of the efficiency

436 437

The Control-flow Graph:
1.8 Application: Loop-invariant Code
Example:

for (i = 0;i < n;i++)
ali] = b+ 3;

// Theexpression b+ 3 isrecomputed in every iteration :-(

// This should be avoided :-)

438 439

Warning: I'=b+3; may not be placed before the loop : Warning: T"=b+3; may not be placed before the loop :

\'of;u i< Xt‘g‘ i
—— There is no decent place for T =b+3; :-(—— There is no decent place for 7 =b+ 3;
440 440
) U&/{L/ e §
Cg/\
. M ™ , |
Idea: Transform intoa do-while-loop ... Idea: Transform intoa do-while-loop ...
ey

M A, (.)
\\Pu&» <1
D Neg(i < n) /

Neg(i < n) -\2 -—

3y
3
L =A+iy
‘ O) .
; th = r* I‘
| ® \
+1: i
(63

Pos(i < n)

441

441

Applicationof 15 (PRE):

Application of 15

(PRE) :

o a5 o (a5
][’;:IJ U Lf’ Lf’ I’:“: (] m m
(1",': (i
A Posli <) 1 0 0 /,/*"'4 Pos(i < n) 1 0 0
Neg(i < n) / D 2 0 {b+3} Neg(i < n) / (e 2 0 {b+3}
' 3| (beay| 0 y =I'—’*;g_~ 3| {b+3)| 0
Al{p+3}| 0 [A=A+iy 4 {b+3}| 0
S| {b+3y| 0 ;' L -iﬁ;l,i- 50 {b+3}] 0
M[A] =w;
Gl {b=3}| 0 . ® 6/ {b+3}| 0
Gl 0 0 Ay 6 0 g
) _ @ (6) i . .
" Pos(i < n) / 0 0 =" Neg n) ~ Pos(i <1 / 0 0
443 444
Conclusion: ApplinltiOll of T5 (PRE):
e Elimination of partial redundancies may move loop-invariant code \\L/U\l ‘ ‘ A B ‘
out of the loop :-)) 0 0 0
e This only works properly for do-while-loops - (1 0 0
e To optimize other loops, we transform them into do-while-loops Neg 9 0 (h+3)
before-hand:) ‘ i
31 {b+ 3} 0
/ 41 {b+3
while (b) stmt —— if (b) [{3y /
* 50{b+3
do stmt ; SR 0
6|{b+3 !
while (b); | s /
AR 6/ 0 0
—_— Loop Rotation ~ Neg(Pos(i < n) : 4 4

445

444

Conclusion:

Problem:

¢ [Elimination of partial redundancies may move loop-invariant code

out of the loop :-)) If we do not have the source program at hand, we must re-construct
e This only works properly for do-while-loops :-(potential loop headers :-)
¢ To optimize other loops, we transform them into do-while-loops

before-hand: — Pre-dominators

while (b) stmt —— if (b) u pre-dominates v, if every path = : start —* v contains wu. We
do stmt write: uw = v.

while (b); .
“=" isreflexive, (ransitive and anti-symmetric ~ :-)

— Loop Rotation

445 446

Since [k]* are distributive, the P[v] can computed by means of
Computation: fixpoint iteration :-)

We collect the nodes along paths by means of the analysis:
, Example:
P= 2.\th'~ C = O

.
[(. 0P = PuU{v} (0) .

=

7\ i 0 {0}
‘/i\l—‘—
/\ ECE
=%) 2| {0,1,2}
Then the set P[v] of pre-dominators is given by: N N/
) Y 3] {0,1,2,3}
) 1]40,1,2,3.4
Pl = m{ [7]F {start} | = : start —=* v} \r {)
N 51 {0,1,5}
(4)

7

447 448

Since [k]* are distributive, the 7P|

]

can computed by means of

fixpoint iteration) The partial ordering “=" in the example:
Example:
(0)
% T P | T NN
L A 0 {0}
0 0 i
™ o /\ 1 {n
) /] 0, - o
K T_‘ .— 3) — }
& ® o iR 3| 12,3
: 1.2, 2/ .
& [] 3 (BT
2/ 0,1,2,3, Y -
i : : ® | @
1 5 {0,1,5}
A
448 449
Since [k]* are distributive, the P[v] can computed by means of
fixpoint iteration :-) The partial ordering “=" in the example:
Example:
G T 7 |
P
_ RN |
0] 1% /'\ 1 {01
L o0 (5 2 2 {0,1,2}
2 0,1,2 - | . :
9 {({] 1.2 i} "/:J%\:‘ ’ {U‘ l‘ 2‘ 3}
X il I R \-r 41{0,1,2,3,4}
(3) 9
\i/ 1[{0,1,2,3 4} 0) 5] {0,1,5)
o 50 {0,1,5))
2

448

449

Apparently, the result is a tree :-)

In fact, we have:

Theorem:

Every node © has at most one immediate pre-dominator.

Proof:
Assume:

there are wu; # u, which immediately pre-dominate v.

If u; = uy; then w; notimmediate.

Now for every 7 : start —* v :

T =T Ty with my : start —* uy
Moty = v

If, however, 1w, us

avoiding s :

., -
start n " ! D R LU
PAN b

are incomparable, then there is path:

start —* v

=1 Uz
Consequently, wq,u; are incomparable :-)
450 451
Now for every w : start —* v : Now for every 7 : start —* v :
=1 Mo with my o start =" uy

i

91U U
If, however, u;,us are incomparable, then there is path:
avoiding 1w :

~a a
start 2! v
L . 4
=T} =2
452

start —* v

T = My with m oo start —* uy
Ty iUy —» U

If, however, w;,u; are incomparable, then there is path:

avoiding wq :

start ul,

=iy ~us

start —* v

Observation:

The loop head of a while-loop pre-dominates eéyery node in the‘body.

A back edge from the exit
through

Accordingly, we define:

u

to the loop head

v € Ply

v

can be identified

Transformation 6:

lab

~
(o)
R —\
,\t‘glf/ ™, Pos (e)
1) (ug) %)

uy & Plu P
7‘[] Neg (e) / N\, Pos (e)
ug, v € Plu] R 4 _ -
— () (u2) @
] A A
Neg (&) Pos (&)

We duplicate the entry check to all back edges :-)

. in the Example:

~

... in the Example:

Warning:

There are unusual loops which cannot be rotated:

Pre-dominators:

... but also common ones which cannot be rotated:

o y N 5) { 2\
\‘\i//l" (2/_‘ R \I,/
) { PN
&/ 3 (3)
Lo) =
l N l
(3) i 0
I/ (1) e
S~
(1)
A Here, the complete block between back edge and conditional jump should

be duplicated :-(

460

