Script generated by TTT

Title: Seidl: Programmoptimierung (28.11.2012)

Date: Wed Nov 28 09:35:33 CET 2012

Duration: 87:03 min

Pages: 57

- \rightarrow Evaluation starts with an interesting unknown x_i (e.g., the value at stop)
- ightarrow Then automatically all unknowns are evaluated which influence x_i :-)
- → The number of evaluations is often smaller than during worklist iteration ;-)
- → The algorithm is more complex but does not rely on pre-computation of variable dependencies:-))
- ightarrow It also works if variable dependencies during iteration change !!!

- \rightarrow Evaluation starts with an interesting unknown x_i (e.g., the value at stop)
- ightarrow Then automatically all unknowns are evaluated which influence x_i :-)
- ightarrow The number of evaluations is often smaller than during worklist iteration ;-)
- → The algorithm is more complex but does not rely on pre-computation of variable dependencies:-))
- → It also works if variable dependencies during iteration change !!!

 \Longrightarrow interprocedural analysis

1.7 Eliminating Partial Redundancies

Example:

// x+1 is evaluated on every path ...

// on one path, however, even twice :-(

421

Goal:

422

Idea:

- (1) Insert assignments $T_e = e$; such that e is available at all points where the value of e is required.
- (2) Thereby spare program points where e either is already available or will definitely be computed in future.

Expressions with the latter property are called very busy.

(3) Replace the original evaluations of e by accesses to the variable T_e .

→ we require a novel analysis :-))

Goal:

422

Idea:

- (1) Insert assignments $T_e = e$; such that e is available at all points where the value of e is required.
- (2) Thereby spare program points where e either is already available or will definitely be computed in future.

Expressions with the latter property are called very busy.

- (3) Replace the original evaluations of e by accesses to the variable T_e .
 - ⇒ we require a novel analysis :-))

423

An expression e is called busy along a path π , if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwriten.

// backward analysis!

e is called very busy at u , if e is busy along every path $\pi: u \to^* stop$.

Accordingly, we require:

$$\mathcal{B}[u] = \bigcap \{ \llbracket \pi
rbracket^\sharp \emptyset \mid \pi : u \to^* stop \}$$

where for $\pi = k_1 \dots k_m$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_m \rrbracket^{\sharp}$$

An expression e is called busy along a path π , if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwritten.

// backward analysis!

e is called very busy at u , if e is busy along every path $\pi: u \to^* stop$.

424

Our complete lattice is given by:

$$\mathbb{B} = 2^{Expr \setminus Vars}$$
 with $\sqsubseteq = \supseteq$

The effect $[\![k]\!]^\sharp$ of an edge $k=(\pmb{u},lab,\pmb{v})$ only depends on lab, i.e., $[\![k]\!]^\sharp=[\![lab]\!]^\sharp$ where:

Our complete lattice is given by:

$$\mathbb{B} = 2^{Expr \setminus Vars} \qquad \text{with} \quad \Box = \bigcirc$$

The effect $[\![k]\!]^\sharp$ of an edge $k=({\color{blue} u},lab,{\color{blue} v})$ only depends on lab , i.e., $[\![k]\!]^\sharp=[\![lab]\!]^\sharp$ where:

all e,e,,e, & Vas

426

These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that *stop* is reachable from every program point :-)

Example:

427

×na U6

Our complete lattice is given by:

$$\mathbb{B} = 2^{Expr \setminus Vars}$$
 with $\square = \square$

The effect $[\![k]\!]^\sharp$ of an edge $k=(\pmb{u},lab,\pmb{v})$ only depends on lab, i.e., $[\![k]\!]^\sharp=[\![lab]\!]^\sharp$ where:

426

A point $\ u$ is called safe for $\ e$, if $\ e \in \mathcal{A}[u] \cup \mathcal{B}[u]$, i.e., $\ e$ is either available or very busy.

Idea:

- We insert computations of e such that e becomes available at all safe program points :-)
- We insert $T_e = e$; after every edge $(\mathbf{u}, lab, \mathbf{v})$ with

$$e \in \mathcal{B}[v] \setminus \llbracket lab \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[u] \cup \mathcal{B}[u])$$

Transformation 5.1:

429

Transformation 5.2:

- // analogously for the other uses of e
- // at old edges of the program.

430

Transformation 5.2:

- / analogously for the other uses of $\ e$
- // at old edges of the program.

Bernhard Steffen, Dortmund

Jens Knoop, Wien

In the Example:

		$\mathcal A$	\mathcal{B}
	0	Ø	Ø
;	1	Ø	Ø
	2	Ø	${x+1}$
	3	Ø	${x+1}$
	4	${x+1}$	${x+1}$
	5	Ø	${x+1}$
	6	${x+1}$	$\{y_1+y_2\}$
	7	${x+1,y_1+y_2}$	Ø
	6		

432

In the Example:

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	${x+1}$
3	Ø	${x+1}$
4	${x+1}$	${x+1}$
5	Ø	${x+1}$
6	${x+1}$	$\{y_1+y_2\}$
7	${x+1}$	Ø

433

In the Example:

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	${x+1}$
3	Ø	${x+1}$
4	${x+1}$	${x+1}$
5	Ø	${x+1}$
6	$\{x+1\}$	$\{y_1+y_2\}$
7	${x+1}$	Ø

Im Example:

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	${x+1}$
3	Ø	${x+1}$
4	${x+1}$	${x+1}$
5	Ø	${x+1}$
6	${x+1}$	$\{y_1+y_2\}$
7	${x+1}$	Ø

433

Im Example:

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	${x+1}$
3	Ø	${x+1}$
4	${x+1}$	${x+1}$
5	Ø	${x+1}$
6	${x+1}$	$\{y_1+y_2\}$
7	${x+1}$	Ø

Correctness:

Let $\ \pi$ denote a path reaching $\ v$ after which a computation of an edge with $\ e$ follows.

Then there is a maximal suffix of π such that for every edge k=(u,lab,u') in the suffix:

$$e \in \llbracket lab \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[\mathbf{u}] \cup \mathcal{B}[\mathbf{u}])$$

435

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

434

Then there is a maximal suffix of π such that for every edge k=(u,lab,u') in the suffix:

$$e \in \llbracket lab \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[\underline{u}] \cup \mathcal{B}[\underline{u}])$$

In particular, no variable in e receives a new value :-)

Then $T_e = e$; is inserted before the suffix :-))

Correctness:

Let $\ \pi$ denote a path reaching $\ v$ after which a computation of an edge with $\ e$ follows.

Then there is a maximal suffix of π such that for every edge k=(u,lab,u') in the suffix:

$$e \in \llbracket lab \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[\mathbf{u}] \cup \mathcal{B}[\mathbf{u}])$$

Correctness:

Let $\ \pi$ denote a path reaching $\ v$ after which a computation of an edge with $\ e$ follows.

Then there is a maximal suffix of π such that for every edge k=(u,lab,u') in the suffix:

$$e \in \llbracket lab \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[\underline{u}] \cup \mathcal{B}[\underline{u}])$$

In particular, no variable in e receives a new value :-)

Then $T_e = e$; is inserted before the suffix :-)

436

We conclude:

- Whenever the value of e is required, e is available :-)
 correctness of the transformation
- Every T=e; which is inserted into a path corresponds to an e which is replaced with T:-))
 - → non-degradation of the efficiency

437

1.8 Application: Loop-invariant Code

Example:

for
$$(i = 0; i < n; i++)$$

 $a[i] = b + 3;$

- // The expression b+3 is recomputed in every iteration :-(
- // This should be avoided :-)

The Control-flow Graph:

439

Warning: T = b + 3; may not be placed before the loop:

 \implies There is no decent place for T = b + 3; :-(

440

Warning: T = b + 3; may not be placed before the loop:

 \implies There is no decent place for T = b + 3; :-(

440

fle) while s

Idea: Transform into a do-while-loop ...

441

Idea: Transform into a do-while-loop ...

Application of T5 (PRE):

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b + 3\}$	Ø
4	$\{b + 3\}$	Ø
5	$\{b + 3\}$	Ø
6	$\{b + 3\}$	Ø
6	Ø	Ø
7	Ø	Ø

443

Application of T5 (PRE):

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b + 3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
6	Ø	Ø
7	Ø	Ø

444

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for do-while-loops :-(
- To optimize other loops, we transform them into do-while-loops before-hand:

$$\begin{array}{ccc} \text{while } (b) \ stmt & \Longrightarrow & \text{if } (b) \\ & & \text{do } stmt \\ & & \text{while } (b); \end{array}$$

445

Application of T_5 (PRE):

	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
6	Ø	Ø
7	Ø	Ø

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for do-while-loops :-(
- To optimize other loops, we transform them into do-while-loops before-hand:

$$\begin{array}{ccc} \text{while } (b) \ stmt & \Longrightarrow & \text{if } (b) \\ & & \text{do } stmt \\ & & \text{while } (b); \end{array}$$

445

Problem:

If we do not have the source program at hand, we must re-construct potential loop headers ;-)

⇒ Pre-dominators

u -pre-dominates v , if every path $\ \pi: start \to^* v$ -contains $\ u.$ We write: $\ u \Rightarrow v$.

"⇒" is reflexive, transitive and anti-symmetric :-)

446

Computation:

We collect the nodes along paths by means of the analysis:

$$\mathbb{P} = 2^{Nodes} \quad , \qquad \qquad \sqsubseteq \ = \ \supseteq$$

$$[\![(_,_,v)]\!]^\sharp \ P \ = \ P \cup \{v\}$$

Then the set $\mathcal{P}[v]$ of pre-dominators is given by:

$$\mathcal{P}[v] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \{ start \} \mid \pi : start \to^* v \}$$

447

Since $[\![k]\!]^\sharp$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

	\mathcal{P}
0	{0}
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

Since $[\![k]\!]^{\sharp}$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

	\mathcal{P}
0	{0}
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

448

The partial ordering " \Rightarrow " in the example:

	\mathcal{P}
0	{0}
1	$\{0, 1\}$
2	$\{0,1,2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

44

Since $[\![k]\!]^\sharp$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

	${\cal P}$
0	{0}
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

The partial ordering " \Rightarrow " in the example:

	\mathcal{P}
0	{0}
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

448

Apparently, the result is a tree :-)

In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are $u_1 \neq u_2$ which immediately pre-dominate v.

If $u_1 \Rightarrow u_2$ then u_1 not immediate.

Consequently, u_1, u_2 are incomparable :-)

450

Now for every $\pi : start \to^* v$:

$$\pi = \pi_1 \; \pi_2$$
 with $\pi_1 : start \to^* u_1$
$$\pi_2 : u_1 \to^* v$$

If, however, u_1,u_2 are incomparable, then there is path: $start \to^* v$ avoiding u_2 :

451

Now for every $\pi : start \rightarrow^* v$:

$$\pi = \pi_1 \; \pi_2$$
 with $\pi_1 : start \to^* u_1$
$$\pi_2 : u_1 \to^* v$$

If, however, u_1,u_2 are incomparable, then there is path: $start \to^* v$ avoiding u_2 :

Now for every $\pi : start \to^* v$:

$$\pi = \pi_1 \; \pi_2$$
 with $\pi_1 : start \to^* u_1$
$$\pi_2 : u_1 \to^* v$$

If, however, u_1,u_2 are incomparable, then there is path: $start \to^* v$ avoiding u_2 :

The loop head of a while-loop pre-dominates every node in the body.

$$v \in \mathcal{P}[u]$$

:-)

Accordingly, we define:

453

Transformation 6:

We duplicate the entry check to all back edges :-)

454

... in the Example:

455

... in the Example:

Warning:

There are unusual loops which cannot be rotated:

Pre-dominators:

459

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(