Script generated by TTT
P 9 y ... but also common ones which cannot be rotated:

D e ——— (['}/:
Title: Seidl: Programmoptimierung (03.12.2012) ¢ 1
(1) (1)
Date: Mon Dec 03 15:05:58 CET 2012 // \2 // \) |
W \.i./ N4 ;\;
Duration: 85:42 min ©) O ®
1 I
Pages: 56 b =

Here, the complete block between back edge and conditional jump should
be duplicated :-(

462

... but also common ones which cannot be rotated:

1.9 Eliminating Partially Dead Code

Y Example:
©
:
Here, the complete block between back edge and conditional jump should
be duplicated :-(z+ 1 need only be computed along one path :-(

462 463

Problem:
Idea:
‘ e The definition =z = ¢;
edge where ¢ is safe

= K

(z & Vars,)
:-)

may only be moved to an

o) 0 e The definition must still be available for uses of = ;-
Ny o
roen |
\'/1'\‘: ' 1'\| —
/- /‘-’\\T(: v+ 1;
(2) , (2)
f \I/ S — ‘ \I/ S We define an analysis which maximally delays computations:
| 1 ‘ - 3 1 I = 3
\ o \ o
\ (3) (3) J*D =D
\ S Nt {l
@) e [I D\(Use, U Def YU{z=e} if z¢& Vars,
N/} §7 / xr = e = - N
= = D\ (Use. U Def) if ze Vars,
464 465
... where: ... Where:
Use, = {y=¢|ye Vars} Use. = {y=¢"|ye Vars.}
Def, = {y=¢ |y=xvaec Vars,} Def, = {yv=¢;|ly=aVvaze Vars.}

For the remaining edges,

H:,r' = AU[r]‘.]I:D
[Uf:r = r->:]:D

[[Pc:s:r J]I:D

466

we define:

D\(Use. U Def)
D\(Use., U Use.,)
[Neg(e)]* D

D\ Use,

467

Warning:

We may move y =e¢; beyond ajoinonly if y =e¢; can be delayed We conclude:

along all joining edges: e The partial ordering of the lattice for delayability is given by “2".

e Atprogram start: Dy = 0.

Therefore, the sets D[u] ofat « delayable assignments can

be computed by solving a system of constraints.

H//4” P2 e Wedelay only assignments « where «a has the same effect
N -] as « alone.
| o= MTY;
) e The extra insertions render the original assignments as assignments
(3 yr— .
e to dead variables ...

Here, 7"=z+1; cannotbe moved beyond 1 !!!

468 469

(u)
¢ a € D[u]\[Pos(e)]*(D[u])

(w) (u)

Transformation 7:

(u)

[« & Dzt om)

lab

5_{,‘5 Note:

a € [lab]E(D\D[e]
Transformation 17 is only meaningful, if we subsequently eliminate
assignments to dead variables by means of transformation T2 :-)

In the example, the partially dead code is eliminated:

470 471

D D
0 ¢ 0 0
AT =2+ 1;} LI{T =z + 13}
=T; 2 {T=2+1} 2/1{T'=x+1;}
3 0 3 0
4 0 4 0
472 473
Remarks:
e After , all original assignments y =¢e; withy & Vars, are
‘0 L assignments to dead variables and thus can always be eliminated
¢ ; 0] {=} =)
/‘1 (2) 1] {«} e DBy this, it can be proven that the transformation is guaranteed to be
L T=r+1; 2| {x} non-degradating efficiency of the code :-))
‘_ :.:L;W' . 2| {x, T} e Similar to the elimination of partial redundancies, the
\ é U ’ 3 0 transformation can be repeated -}
(@R
: 4
474

Conclusion:

— The design of a meaningful optimization is non-trivial.

— Many transformations are advantageous only in connection with
other optimizations

— The ordering of applied optimizations matters !!

— Some optimizations can be iterated !!!

... a meaningful ordering:

Constant Propagation

Interval Analysis

Alias Analysis

Loop Rotation

Available Expressions

it "I WA N |
—eat varraoies—

Partially Dead Code

Partially Redundant Code

-
=

... a meaningful ordering:

Constant Propagation
Interval Analysis

Alias Analysis

Loop Rotation

Available Expressions

Dead Variables

Partially Dead Code

Partially Redundant Code

2 Replacing Expensive Operations by Cheaper

Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f(I) = Gy 2"+ an cx! +...+a -+ ag

H Multiplications ‘ Additions

naive

1
zn(n+1)

n

re-use

2n —1

m

Horner-Scheme

ldea: 2 Replacing Expensive Operations by Cheaper

Ones
flz) = (... ((an ST) ‘I+an—?))z +ag
£ » + 2.1 Reduction of Strength
(2) Tabulation of a polynomial f(z) of degree 1 : (1) Evaluation of Polynomials

fz) = ap- 2"+ a, 2" 4 4a -z +a

— Torecompute f(z) forevery argument z is too expensive :-) ‘ H Multiplications ‘ Additions
— Luckily, the n-th differences are constant !!!

naive in(n+1) n

re-use 2n — 1 n

Horner-Scheme

479 478
WA
A Example: f(x) = 32® — 52 + 4w + 13
Idea: '
% X+)| A] ar|ar
3 - 3 0 13 2 8 18
fx) = (... ((an. ST apoy) T +an—2) st ag -
1| 15 | 10 |[26] 1€
Bl
(2) Tabulation of a polynomial f(z) of degree 7 : 3 Lo
M’
44ty A
— Torecompute f(z) forevery argument z is too expensive -
— Luckily, the n-th differences are constant !!! Here, the n-th difference is always

Ap(f)y=mnl-a, - b" (h step width)

480

Costs: Simple Case: flr)=ay-x+a

e 1 timesevaluation of f; e .. naturally occurs in many numerical loops :-)

L . et - k. -
e 5 (n—1)-n subtractions to determine the A¥: e The first differences are already constant:

flx+h)—f@)=a -h

e 1 additions for every further value :-)

. Instead of the sequence: yi=f(zg+i-h), i =0
we compute: yo=f(xg), A=ay-h

yi=yi1+A, i>0
Number of multiplications only depends on 7 :-)) i

481 482

.. or, after loop rotation:
Example:

i = ip; Pos(

for (i=igsi <mi=i+h) | Negli if (i <n) do { (2)
A=Ag+b-4; A=Ag+b-i: j:l:_k +

MA]=...; MiAl=..; iu 4] =

} i=ith (@
} while (i < n); Yi=ith

)

Neg(* Pos

483 484

. and reduction of strength:
Warning:

e Thevalues b, h, A; mustnot change their values during the loop.

i = ig; : i ition i
o e i, A may be modified at exactly one position in the loop :-(
if (2 <mn) {))
A=b-h Neg(i < 1) e One may try to eliminate the variable ¢ altogether :
A=Ap+b-ip;
do { — i may not be used else-where.
M[A]=...; — The initialization must be transformed into:
i=i+h A=Ay +b-ig.
A=A+ A — The loop condition i < n must be transformed into:
} while (i < n); A< N for N=Ay+b-n.
1 — b must always be different from zero !!!

485 486

. or, after loop rotation: Warning:
AXe 5

e Thevalues b, h, A, mustnot change their values during the loop.
e i, A may be modified at exactly one position in the loop :-(

e One may try to eliminate the variable ¢ altogether :

i = ig;
if (1 <n) do { (6) .
' A Ao tb.i = + = _ —» i may not be used else-where.
A=Ag+b-1u YA aomet -
MA] =... 3) — The initialization must be transformed into:
oY U + M[A]=...; A= A+b-i
S . s A= Aq) -1 .
i=1i+h; O))
1 while (i < n); ; — it h: — The loop condition i < n must be transformed into:
() A<N for N=As+b-n.
Neg(f Pos(i < n) — b must always be different from zero !!!

484 486

) ... and reduction of strength:
... or, after loop rotation:

ko
1= 1p; 1 - -
if (i <n) { \Posti < m 376‘
, 1=
i = iu: s(i A=bh- h: }ng‘, < 1 f :
if (i < n) do { 2) A=Ao+b-io; f A= Ao+t
A=Ay +b-i /*l =Ao+b-i; do { Nt/ " i’:ur A
MIAl = - (3) M[A]=...; Y
MIA] =...; Vst - . v ©)
i=i+h; (1) ' i=1i+h; — 1}
} while (i < n); Fi=i+h A=A+A; '
(5) } while (i < n);
Neg(: * Pos(i }
Neg(i < n)
484 485
Warning:
e Thevalues 0,h, Ay must not change their values during the loop. Approach:
e i, A maybe modified at exactly one position in the loop :-(
¢ One may try to eliminate the variable i altogether : Identify
loops:

—» ¢ may not be used else-where.

e e . iteration variables;
— The initialization must be transformed into: ‘ ¢

A=Ay +b-1ip. ... constants;
— The loop condition i <7 must be transformed into: the matching use structures.
A< N for N=Ag+b-n.

— b must always be different from zero !!!

486 487

Loops:

Example:

... are identified through the node © with back edge (_, _,v) 0 {0}
1 {0,1}
For the sub-graph G, ofthecfgon {w |v = w}, we define:) 2| {0,1,2}
Loop[v] = {w|w —="v in G,} l 31 40,1,2,3}
f/ 41{0,1,2,3,4}
4\/‘ 51 {0,1,5}
488 491
Example: Example:
N o
® T 7] RN
0 {0} 0 {0}
Y ‘./'_‘
: \ 1| {o.1} /1\ 1 {0,1}
'7) 21 {0,1,2} (’5’) 12) 21 {0,1,2}
S - R
i 3| {0,1,2,3} | 3| {0,1,2,3}
‘f/ 1140,1,2,3,4} 'f/ 1]{0,1,2,3,4}
‘_1\) 51 {0,1,5} .\4] 5| {0,1,5}
490 490

{2

We are interested in edges which during each iteration are executed

exactly once:

This property can be expressed by means of the pre-dominator relation ...

492

Example:

N ! {[]}
(1) 1 {0,1}
(_;‘/ \.’3] 2| {0,1,2}

\

3] {0,1,2,3}
41{0,1,2,3,4}
{0,1,5}

A

A

2

-
%

':_-l—‘—f{\‘ool—]‘[‘

491

Assume that (u, _, v) is the back edge.

Then edges k= (uy, ,v;) could be selected such that:
e v pre-dominates u;
e 1 pre-dominates v;

e v predominates .

493

Assume that (u, ,v) is the back edge.

Then edges & = (uy,_,v;) could be selected such that:
e o pre-dominates
e) pre-dominates v, ;

e v; predominates wu.

On the level of source programs, this is trivial:

do { s1...5
} while (e);

The desired assignments must be among the —s;)

[teration Variable:

i is an iteration variable if the only definition of inside the loop occurs
at an edge which separates the body and is of the form:

"0

A loop constant is simply a constant (e.g., 4Z), or slightly more libaral,
an expression which only depends on variables which are not modified

for some loop constant = A .

during the loop :-)

494 495
(3) Differences for Sets
lteration Variable: Consider the fixpoint computation:
i is an iteration variable if the only definition of i inside the | ==
i is aniteration variable if the only definition of i inside the loop occurs
at an edge which separates the body and is of the form: for (t=Fa;t g ‘T:}
r=zxUt

i=1i+h;

for some loop constant /.

A loop constant is simply a constant (e.g., 42), or slightly more libaral,
an expression which only depends on variables which are not modified
during the loop :-)

495

If F isdistributive, it could be replaced by:
=1

for (A= R A£0[A=(FA) \ o]

r=xUA;

The function F' must only be computed for the smaller sets A :-)

semi-naive iteration

496

Instead of the sequence: 0 C F () C F?*(0) C
we compute: A U Ay UL
where: Ay = F(F{M\FHD)

Assume that the costs of F o is 1+ #x.

Then the costs may sum up to:

naive l+2+...+n+n = In(n+3)

semi-naive 2n

F (AI)\(AI U...u Az) with A() = @

2.2 Peephole Optimization

[dea:

e Slide a small window over the program.
e Optimize agressively inside the window, i.e.,
— Eliminate redundancies!

— Replace expensive operations inside the window by cheaper

where n is the cardinality of the result. ones!
- A linear factor is saved -
497 498
Examples: Examples:
y=Mlz];z =a+1; — y = Mz++]; y=Mzl,z=2+1; — y = M[z++];
// given that there is a specific post-increment instruction - // given that there is a specific post-increment instruction :-)
z=y—a+a; — z=1; z=1y—a+ta: — 2=
// algebraic simplifications :-) // algebraic simplifications :-)
T = — r=21I —
r=20 — r=xOx r=10 — r=zdT;
r=2-x — r=x+z r=2-x — r=x+x
(a = Q Qﬁ-% ~+c
499

499

\
)
“,
R Implementation: /g\ !
Important Subproblem: nop-Optimization l . ?&o A)"

e We construct a function next : Nodes — Nodes with:

_(-.\\
- ¢ lab next v if (u,;,v) edge
. next u =
) u otherwise
/ Warning: This definition is only recursive if there are ;-loops
P 0
e We replace every edge:
— If (w,;,v) isanedge, wv; hasno further out-going edge. (u, lab, v) N (u, lab, next v)

— Consequently, we can identify »; and v -
’ ’ ... whenever [lab # ;
— The ordering of the identifications does not matter :-))

e All;-edges are removed -)

Example: Example:

(2)
{ next 1 = 1 next 1 = 1
i next 3 = 4 next 3 = 4
(4) next 5 = 6 next 5 = 6
!
i
6

502 503

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly
arrangement of instructions :-)

Warning:

Not every linearization is equally efficient !!!

504

