Script generated by TTT

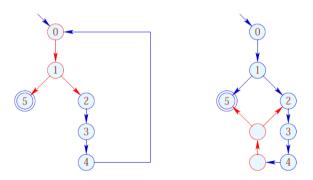
Title: Seidl: Programmoptimierung (03.12.2012)

Date: Mon Dec 03 15:05:58 CET 2012

Duration: 85:42 min

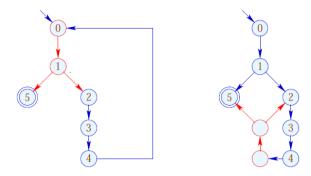
Pages: 56

... but also common ones which cannot be rotated:



Here, the complete block between back edge and conditional jump should be duplicated $\,$:-(

... but also common ones which cannot be rotated:

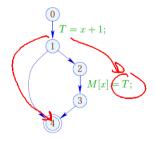


Here, the complete block between back edge and conditional jump should be duplicated :-(

462

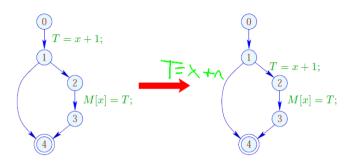
1.9 Eliminating Partially Dead Code

Example:



x+1 need only be computed along one path ;-(

Idea:



464

 $\chi = \chi + 1$

Problem:

- The definition x = e; $(x \notin Vars_e)$ may only be moved to an edge where e is safe ;-)
- The definition must still be available for uses of x;-)

We define an analysis which maximally delays computations:

$$[\![:]\!]^{\sharp} D = D$$

$$[\![x = e :]\!]^{\sharp} D = \begin{cases} D \backslash (Use_e \cup Def_x) \cup \{x = e : \} & \text{if} \quad x \notin Vars_e \\ D \backslash (Use_e \cup Def_x) & \text{if} \quad x \in Vars_e \end{cases}$$

465

... where:

$$Use_e = \{y = e'; | y \in Vars_e\}$$

$$Def_x = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$$

... where:

$$Use_e = \{y = e'; | y \in Vars_e\}$$

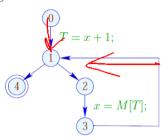
 $Def_x = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$

For the remaining edges, we define:

$$\begin{split} & \llbracket x = M[e]; \rrbracket^{\sharp} D &= D \backslash (\mathit{Use}_e \cup \mathit{Def}_x) \\ & \llbracket M[e_1] = e_2; \rrbracket^{\sharp} D &= D \backslash (\mathit{Use}_{e_1} \cup \mathit{Use}_{e_2}) \\ & \llbracket \mathsf{Pos}(e) \rrbracket^{\sharp} D &= \llbracket \mathsf{Neg}(e) \rrbracket^{\sharp} D &= D \backslash \mathit{Use}_e \end{split}$$

Warning:

We may move y=e; beyond a join only if y=e; can be delayed along all joining edges:



Here, T = x + 1; cannot be moved beyond 1 !!!

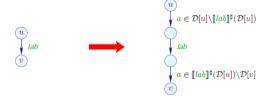
468

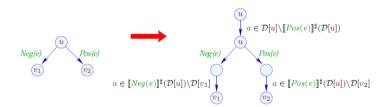
We conclude:

- The partial ordering of the lattice for delayability is given by "⊇".
- At program start: $D_0 = \emptyset$. Therefore, the sets $\mathcal{D}[u]$ of at u delayable assignments can be computed by solving a system of constraints.
- We delay only assignments a where a a has the same effect as a alone.
- The extra insertions render the original assignments as assignments to dead variables ...

469

Transformation 7:

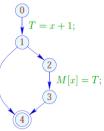




Note:

Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2:-)

In the example, the partially dead code is eliminated:



	\mathcal{D}
0	Ø
1	T = x + 1;
2	$\{T = x + 1;\}$
3	Ø
4	Ø

T = x + 1;M[x] = T;

	\mathcal{D}
0	Ø
1	$\{T = x + 1;\}$
2	$\{T = x + 1;\}$
3	Ø
4	Ø

472

Remarks:

M[x] = T;

	\mathcal{L}
0	$\{x\}$
1	$\{x\}$
2	$\{x\}$
2'	$\{x,T\}$
3	Ø
4	Ø

• After T_7 , all original assignments y = e; with $y \notin Vars_e$ are assignments to dead variables and thus can always be eliminated

473

- By this, it can be proven that the transformation is guaranteed to be non-degradating efficiency of the code :-))
- Similar to the elimination of partial redundancies, the transformation can be repeated :-}

474

Conclusion:

- \rightarrow The design of a meaningful optimization is non-trivial.
- → Many transformations are advantageous only in connection with other optimizations :-)
- → The ordering of applied optimizations matters !!
- \rightarrow Some optimizations can be iterated !!!

476

... a meaningful ordering:

T4	Constant Propagation	
	Interval Analysis	
	Alias Analysis	
Т6	Loop Rotation	
T1, T3, T2	Available Expressions	
T2	Dead Variables	
T7, T2	Partially Dead Code	
T5, T3, T2	Partially Redundant Code	

... a meaningful ordering:

T4	Constant Propagation	
	Interval Analysis	
	Alias Analysis	
Т6	Loop Rotation	
T1, T3, T2	Available Expressions	
T2	Dead Variables -	6
T7, T2	Partially Dead Code	
T5, T3, T2	Partially Redundant Code	5

477

2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

	Multiplications	Additions
naive	$\frac{1}{2}n(n+1)$	n
re-use	2n-1	n
Horner-Scheme	n	n

Idea:

$$f(x) = (\dots((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

- Tabulation of a polynomial f(x) of degree n:
- To recompute f(x) for every argument x is too expensive :-)
- Luckily, the n-th differences are constant !!!

479

2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

	Multiplications	Additions
naive	$\frac{1}{2}n(n+1)$	n
re-use	2n-1	n
Horner-Scheme	n	n

Idea:

$$f(x) = (\dots((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

- Tabulation of a polynomial f(x) of degree n:
- To recompute f(x) for every argument x is too expensive :-)
- Luckily, the *n*-th differences are constant !!!

Example:
$$f(x) = 3x^3 - 5x^2 + 4x + 13$$

n	f(n)	Δ	Δ^2	Δ^3
0	13	2	8	18
1	15	10	26	18
2	25	36	(44)	
3	61	85)	'
4,	14.1	$\overline{}$,	

Here, the n-th difference is always

$$\Delta_h^n(f) = n! \cdot a_n \cdot h^n \qquad (h \text{ step width})$$

Costs:

- n times evaluation of f;
- $\frac{1}{2} \cdot (n-1) \cdot n$ subtractions to determine the Δ^k ;
- n additions for every further value :-)

 \Longrightarrow

Number of multiplications only depends on n:-))

481

Simple Case: $f(x) = a_1 \cdot x + a_0$

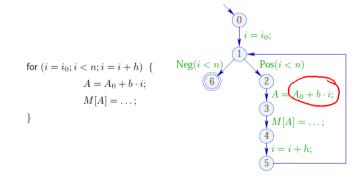
- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$f(x+h) - f(x) = a_1 \cdot h$$

• Instead of the sequence: $y_i=f\left(x_0+i\cdot h\right),\ i\geq 0$ we compute: $y_0=f\left(x_0\right),\ \Delta=a_1\cdot h$ $y_i=y_{i-1}+\Delta,\ i>0$

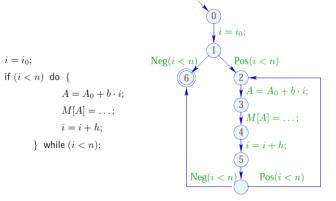
482

Example:

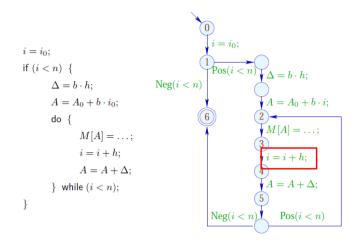


483

... or, after loop rotation:



... and reduction of strength:



485

Warning:

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop :-(
- One may try to eliminate the variable i altogether:
 - *i* may not be used else-where.
 - The initialization must be transformed into: $A = A_0 + b \cdot i_0 .$
 - The loop condition i < n must be transformed into: A < N for $N = A_0 + b \cdot n$.
 - b must always be different from zero!!!!

... or, after loop rotation:

$$i=i_0;$$

$$i=i_0;$$

$$Neg(i
$$Pos(i
$$A=A_0+b\cdot i;$$

$$M[A]=\ldots;$$

$$i=i+h;$$

$$\} \text{ while } (i
$$M[A]=\ldots;$$

$$M[A]=\ldots;$$

$$M[A]=\ldots;$$

$$M[A]=\ldots;$$

$$M[A]=\ldots;$$

$$M[A]=\ldots;$$

$$M[A]=\ldots;$$

$$M[A]=\ldots;$$

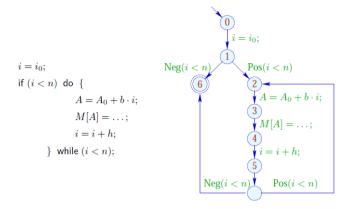
$$M[A]=\ldots;$$$$$$$$

484

Warning:

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop :-(
- One may try to eliminate the variable i altogether:
 - *i* may not be used else-where.
 - The initialization must be transformed into:
 - $A = A_0 + b \cdot i_0 .$
 - The loop condition i < n must be transformed into: A < N for $N = A_0 + b \cdot n$.
 - b must always be different from zero !!!

... or, after loop rotation:



484

... and reduction of strength:

$$i=i_0;$$
 if $(i< n)$ {
$$\Delta=b\cdot h;$$

$$A=A_0+b\cdot i_0;$$
 do {
$$M[A]=\dots;$$

$$i=i+h;$$

$$A=A+\Delta;$$
 } while $(i< n);$ } Neg $(i< n)$
$$A=A_0+b\cdot i;$$

$$A=A_0+b\cdot i;$$

485

Warning:

- The values b, h, A_0 must not change their values during the loop.
- ullet i,A may be modified at exactly one position in the loop :-(
- One may try to eliminate the variable i altogether:
 - \rightarrow i may not be used else-where.
 - $\,\rightarrow\,\,$ The initialization must be transformed into:

$$A = A_0 + b \cdot i_0 .$$

 \rightarrow The loop condition i < n must be transformed into:

A < N for $N = A_0 + b \cdot n$.

 \rightarrow b must always be different from zero !!!

Approach:

Identify

... loops;

... iteration variables;

... constants;

... the matching use structures.

Loops:

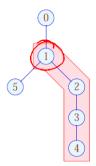
... are identified through the node $\ v$ with back edge $\ (_,_,v)$:-)

For the sub-graph G_v of the cfg on $\{w \mid v \Rightarrow w\}$, we define:

$$\mathsf{Loop}[v] \ = \ \{w \mid w \to^* v \ \text{in} \ G_v\}$$

488

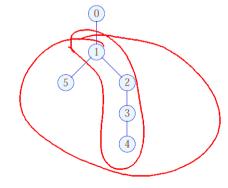
Example:



	\mathcal{P}
0	{0}
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0,1,2,3,4\}$
5	$\{0, 1, 5\}$

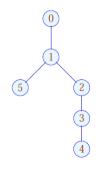
491

Example:



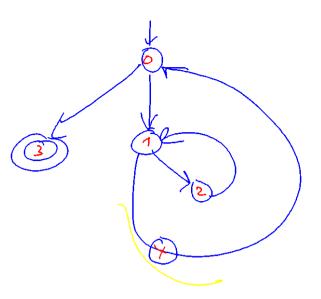
	\mathcal{P}
0	{0}
1	{0,1}
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

Example:

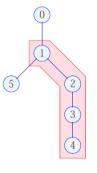


	\mathcal{P}
0	{ <mark>0</mark> }
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

490



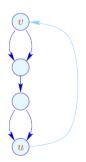
Example:



	\mathcal{P}
0	{0}
1	$\{0, 1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0,1,2,3,4\}$
5	$\{0, 1, 5\}$

491

We are interested in edges which during each iteration are executed exactly once:



This property can be expressed by means of the pre-dominator relation \dots

Assume that $(u, _, v)$ is the back edge.

Then edges $k=(u_1,_,v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, ..., v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

On the level of source programs, this is trivial:

do {
$$s_1 \dots s_k$$
 } while (e) ;

The desired assignments must be among the s_i :-)

494

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop occurs at an edge which separates the body and is of the form:

$$i = i + h;$$

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop :-)

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop occurs at an edge which separates the body and is of the form:

$$i = i + h;$$

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop :-)

495

(3) Differences for Sets

Consider the fixpoint computation:

$$x = \emptyset;$$

for $(t = Fx; t \not\subseteq x; t = Fx;)$
 $x = x \cup t;$

If F is distributive, it could be replaced by:

$$x = \emptyset;$$
 for $(\Delta = F_{\bullet}, \Delta \neq \emptyset; \Delta = (F\Delta) \setminus x;)$
$$x = x \cup \Delta;$$

The function $\ F$ must only be computed for the smaller sets $\ \Delta$:-) semi-naive iteration

495

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^2(\emptyset) \subseteq \ldots$

we compute: $\Delta_1 \cup \Delta_2 \cup \ldots$

where: $\Delta_{i+1} = F(F^i(\emptyset)) \backslash F^i(\emptyset)$

 $= F(\Delta_i) \setminus (\Delta_1 \cup \ldots \cup \Delta_i) \quad \text{with } \Delta_0 = \emptyset$

Assume that the costs of F(x) is 1 + #x.

Then the costs may sum up to:

naive	$1+2+\ldots+n+n$	=	$\frac{1}{2}n(n+3)$
semi-naive			2n

where n is the cardinality of the result.

A linear factor is saved :-)

497

2.2 Peephole Optimization

Idea:

- Slide a small window over the program.
- Optimize agressively inside the window, i.e.,
 - → Eliminate redundancies!
 - Replace expensive operations inside the window by cheaper ones!

498

Examples:

pies.

$$y = M[x]; x = x + 1;$$
 \Longrightarrow $y = M[x++];$

// given that there is a specific post-increment instruction :-)

$$z = y - a + a;$$
 \Longrightarrow $z = y;$

// algebraic simplifications :-)/

$$x = x;$$
 \Longrightarrow ;

$$x = 0;$$
 \Longrightarrow $x = x \oplus x;$

$$x = 2 \cdot x;$$
 \Longrightarrow $x = x + x;$

Examples:

$$y = M[x]; x = x + 1;$$
 \Longrightarrow $y = M[x++];$

// given that there is a specific post-increment instruction :-)

$$z = y - a + a;$$
 \Longrightarrow $z = y;$

// algebraic simplifications :-)

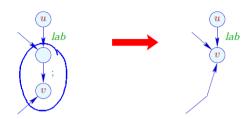
$$x = x;$$
 \Longrightarrow

$$x = 0;$$
 \Longrightarrow $x = x \oplus x;$

$$x = 2 \cdot x;$$
 \Longrightarrow $x = x + x;$

499

Important Subproblem: nop-Optimization



- ightarrow If $(v_1, ;, v)$ is an edge, v_1 has no further out-going edge.
- ightarrow Consequently, we can identify v_1 and v :-)
- \rightarrow The ordering of the identifications does not matter :-))

500

Implementation:

A: good,

• We construct a function $next : Nodes \rightarrow Nodes$ with:

$$\text{next } u = \begin{cases} \text{next } v & \text{if } (u, :, v) \text{ edge} \\ u & \text{otherwise} \end{cases}$$

Warning: This definition is only recursive if there are ;-loops ;???

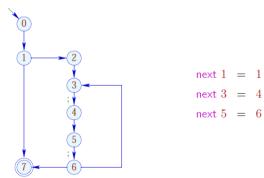
• We replace every edge:

$$(u, lab, v) \implies (u, lab, next v)$$
... whenever $lab \neq ;$

• All ;-edges are removed ;-)

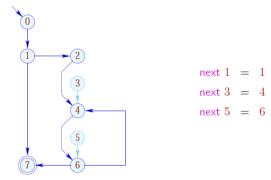
501

Example:



502

Example:



2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly arrangement of instructions :-)

Warning:

Not every linearization is equally efficient $\mathop{!!!}$