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Discussion:

Solutions only matter within the bounds to the iteration variables.
Every integer solution there provides a conflict.
Fusion of loop5is possible if no conflicts occur = :-)

The given special case suffices to solve the case one variable over

VS|

The number of variables in the inequations corresponds to the
nesting-depth of for-loops == in general, is quite small :-)
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Discussion:

Integer Linear Programming (ILP) can decide satisfiability of a

finite set of equations/inequations over 7  of the form:
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Moreover, a (linear) cost function can be optimized  :-)

Warning: The decision problem is in general, already NP-hard !!!
Notwithstanding that, surprisingly efficient implementations exist.

Not just loop fusion, but also other re-organizations of loops yield
ILP problems ...
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Background 5:

Preshurger Arithmetic

Many problems in computer science can be formulated without

multiplication :-)

Let us first consider two simple special cases ...

1.

Linear Equations

20+ 3y = A4




Answers:

Question:
n e [s there a solutionover @ 7 Yes
e Is there a solution over @ 7
- e [s there a solution over Z 7 No
e [s there a solution over 7 7
i e Is there a solution over N 7 No
e Is there a solution over [N 7
Complexity:
Let us reconsider the equations: .
e [s there a solutionover @ 7 Polynomial
2z + 3y = 24 ’
. ; er 77 alv is
¢ — y + 5 = 3 e Is there a solution over 7 7 Polynomial
e [s there a solution over [N 7 NP-hard
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Example:
Solution Method for-Integers:
5y — 102 =18
Observation 1: o
has no solution over 7 :-)
ar+ ... tax,=~5 (Vi: a; #0)
has a solution iff
L’,(‘tl{u.‘ ...(Ik-} | b
R
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Example: Example:

5y — 102 = 18 '—2"(&) e+ 3y = (A§

has no solution over 7. :-)

Observation 2:

Adding a multiple of one equation to another does not change the set of

solutions  :-)
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Observation 3:
Example:
Adding multiples of columns to another column is an invertible
2r + 3y — 94 transformation which we keep track of in a separate matrix ...
r — y + 5z = 3
100 by — 10z = 18
010l — yv + bz = 3
001
by — 10z = 18 —
r — Yy + 5z = 3 1 G#o 5y = 18
01 2|z — y + 32 = 3
001
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Observation 3:

Adding multiples of columns to another column is an invertible Observation 4:

transformation which we keep track of in a separate matrix ... O

10 0 5y — 18 e A special solution of a triangular system can be directly read off
=)

01 2|z — y + 32 = 3 '

00 1 e  All solutions of a homogeneous triangular system can be directly

—_— read off :-)

1 0 =3 5y — 18 e All solutions of the original system can be recovered from the

01 2z — g — 3 solutions of the triangular system by means of the accumulated
transformation matrix:-))

00 1

—— triangular form !!
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L _ 2. One Polynomial Special Case:
Solving over ¥ 7

r = y+5
. . . . ] >
o ... is of major practical importance; 19 2 2
y =z 13
e ... has led to the development of many new techniques: y =2 x—7T
e .. easily allows to encode NP-hard problems;
. There are at most 2 variables per in-equation;

e ... remains difficult if just three variables are allowed per equation.
. no scaling factors.
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2. One Polynomial Special Case:

Idea: Represent the system by a graph:
r > y+5
19 > u
y = 13
y = -7
5
13
. There are at most 2 variables per in-equation;
. no scaling factors.
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Idea: Represent the system by a graph: Idea: Represent the system by a graph:
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Idea: Represent the system by a graph: The in-equations are satisfiable iff

D o the weight of every cycle are at most  0:
19 e the weights of paths reaching = are bounded by the weights of edges
-/ from @ into the sink.
YT N
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The in-equations are satisfiable iff

o the weight of every cycle are at most  0;

o the weights of paths reaching z are bounded by the weights of edges
from x into the sink.
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Compute the reflexive and transitive closure of the edge weights!




3. A General Solution Method:

The in-equations are satisfiable iff

Idea: Fourier-Motzkin Elimination
e the weight of every cycle are at most  0;
e the weights of paths reaching = are bounded by the weights of edges e  Successively remove individual variables = !
from z into the sink. e All in-equations with positive occurrences of = yield lower
bounds.
— e All in-equations with negative occurrences of = vyield upper
bounds.

Compute the reflexive and transitive closure of the edge weights! o All lower bounds must be at most as big as all upper bounds ~ --))
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For r, we obtain:
Example:

5 9 < 4dxy + 10 (1) %—%.rg < 1 (1)

9 < Az + 29 (1) 7 4 < x4+ 219 (2) 4—2ry < (2)
- ‘ : 4 5 .
4 < 1 +2.I’2 (2) ﬂ 0 < 23— a9 (3) %IQ < 1 (3)
0 < 93, — @y (3) 3 6 < x4+ 614 (4) 6 —6xy < 1 (4)
6 < xy + 629 (4) 9 A —11 < —mx — 224 '3-3;' < fﬁl - 12-1'-2 (5)
—11 < =y =20 () ' —IT s 6o w2z () < § tae (6)
—17 S *81‘1 + 21‘2 (6) ! 2\_ —4 g —T2 {f_] —4 S T2 IT’I‘
—4 S —T2 (7)
1 2 3 1 5 If such an =, exists, all lower bounds must be bounded by all upper

bounds, i.e.,




'_3—17%12 < 11— 21, (1,5) —35 < —Tay (1,5) %*%I? < 11— 21, (1,5) -5 < —1y (1,5)
8—lpy < M 4lp, (1,6) -L < L (1,6) 8—lpy < M 4lp, (1,6) —1 < 1y (1.6)
4 -2z < 11 —2a9 (2.5) -7 <40 (2,5) 4 -2z < 11 — 22 (2,5) -7<0 (2,5)
4—2z9 < %+é.r2 (2.6) % < :l;;rz (2,6) 4— 2z < %+é.rg (2.6) % < T (2.6)
twy < 11— 2my (3,5) or —22 < —Bzy (3.5) Ty < 11— 2wy (3,5) or -2 < gy (3,5)
iz, < T 41z, (3,6) - < i (3,6) iz, < 41z, (3,6) —17 < —a, (3,6)
6—6xry < 11 — 22y (4,5) -5 < 4day (4,5) 6 —6ry < 11— 229 (4,5) —% < x5 (4,5)
6— 6y < T+ 1w (4,6) 2 < By (4. 6) 6— 6z, < T+ 1w (4,6) 1< m (4. 6)

—4 < —x (7) —4 < —xy (7) —4 < —x (7) —4 < —a, (7)

This is the one-variable case which we can solve exactly:
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max —lE—EL < oz < min{5,2,17.[4

{ pat S S 5.3 } 8 —lay < 11—-22, (1,5) —5 < —ay (1.5)
From which we conclude: vy € [5.4] ) -1 < S lay (1,6) —1 < (1.6)
4 -2z < 11— 214 (2,5) -7 <0 (2,5)
. 492z, < L4 1g (2,6) L« (2.6)

In General: 6o 2 _
Lo, < 11— 24, (3.5) or —Z < g, (3.5)
i 1wy < U4 1g, (3,6) —17 < —x4 (3.6)

e  The original system has a solution over ) iff the system after i ) .
o . . AT 6—6xy < 11— 215 (4.5) —2 < 19 (4,5)
elimination of one variable has a solution over 7 :-) 1

- : . 6—6z, < L+ 1p (4,6 L <z (4,6
e  Every elimination step may square the number of in-equations R ) z = 72 % 0)

—4 < —xy (7) —4 < —x5 (7)

—— exponential run-time :-((

e It can be modified such that it also decides satisfiability over Z
= Omega Test

This is the one-variable case which we can solve exactly:
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From which we conclude: € [£.4] )

In General:

e  The original system has a solution over () iff the system after
elimination of one variable has a solution over (J -

e  Every elimination step may square the number of in-equations
—— exponential run-time - ((

e It can be modified such that it also decides satisfiability over 7

—— Omega Test

William Worthington Pugh, Jr.
University of Maryland, College Park

Idea:

¢  We successively remove variables. Thereby we omit division ...

e Ifz only occurs with coefficient ~ +1, we apply Fourier-Motzkin
elimination :-)

e  Otherwise, we provide a bound for a positive multiple of = ...

Consider, e.g., (1) and (6):

=3
IA
—
~
+
[R]
5]
L)

99—y < 4.4

[dea:

e We successively remove variables. Thereby we omit division ...

e If .z only occurs with coefficient  +1, we apply Fourier-Motzkin
elimination :-)

e  Otherwise, we provide a bound for a positive multiple of = ...

Consider, e.g., (1)and (6):

[=2]
IA
—
=1
+
[S]
o3
[

97.132
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W.Lo.g., we only consider strict in-equations:

6.2 < 184 2x,

871'2 < 4.2

... where we always divide by gcds:

3 < 9+I2

8—zy < 4.2

This implies:

3'(8*;132) < 4(9+12)

W.lo.g., we only consider strict in-equations:

6.2, < 1842z,

87.1'2 < 4- Ly

... where we always divide by gcds:

A
o
+
&
«
<

This implies:

We thereby obtain:

If one derived in-equation is unsatisfiable, then also the overall
system  :-)

If all derived in-equations are satisfiable, then there is a solution
which, however, need not be integer  :-(

An integer solution is guaranteed to exist if there is sufficient
separation between lower and upper bound ...

Assume a<a-. b-r<f.

Then it should hold that:

and moreover:

T4

We thereby obtain:

If one derived in-equation is unsatisfiable, then also the overall
system  :-)

If all derived in-equations are satisfiable, then there is a solution
which, however, need not be integer - (

An integer solution is guaranteed to exist if there is sufficient
separation between lower and upper bound ...

Assume o< an b-r<f.

Then it should hold that:

and moreover:




We thereby obtain:

e If one derived in-equation is unsatisfiable, then also the overall ... in the EX&'lIllpl(—i‘i
system  :-)

e Ifall derived in-equations are satisfiable, then there is a solution 12 < 4-(9425)—3-(8—ax)
which, however, need not be integer  :-( or:

e Aninteger solution is guaranteed to exist if there is sufficient 12 < 124 Tze
separation between lower and upper bound ... or:

e  Assume a<a-r b-z<f. 0 < z

2

Then it should hold that:
In the example, also these strengthened in-equations are satisfiable

b-a<a-f8 . -
: — the system has a solution over Z = :-)

and moreover:
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We thereby obtain:
¢  If one derived in-equation is unsatisfiable, then also the overall ... in the Example:
system  :-)
¢ I all derived in-equations are satisfiable, then there is a solution 12 < 4-(942)—3-(8—ax)
which, however, need not be integer  :-( or:
¢  Aninteger solution is guaranteed to exist if there is sufficient 12 < 124 Tao

separation between lower and upper bound ...
e Assume a<a-. b-r<f.

Then it should hold that:
In the example, also these strengthened in-equations are satisfiable

b-a<a-f . -
' — the system has a solution over Z = :-)

and moreover:




Discussion:

o If the strengthened in-equations are satisfiable, then also the original
system. The reverse implication may be wrong - (

e Inthe case where upper and lower bound are not sufficiently
separated, we have:

a-B<b-a+|a-b
or:
b-a<ab-a <b~o+

Division with b yields:

a<a-r<oa+tl[a]

... in the Example:

In the example, also these strengthened in-equations are satisfiable

— the system has a solution over Z  :-)

=
=

Discussion:

e If the strengthened in-equations are satisfiable, then also the original
system. The reverse implication may be wrong  :-(

e In the case where upper and lower bound are not sufficiently
separated, we have:

a-B<b-a+|a-b]
or:
b-a<ab-a <b-a-+
Division with b yields:
a<a-r<oaitla]
— forsome e {l...., a—1} I

Discussion (cont.):

—  Fourier-Motzkin Elimination is not the best method for rational
systems of in-equations.

—  The Omega test is necessarily exponential :-)
If the system is solvable, the test generally terminates rapidly.
It may have problems with unsolvable systems :-(

— Also for ILP, there are other/smarter algorithms ...

—  For programming language problems, however, it seems to behave
quite well :-)




Discussion (cont.):

—  Fourier-Motzkin Elimination is not the best method for rational
systems of in-equations.

—  The Omega test is necessarily exponential -
If the system is solvable, the test generally terminates rapidly.
[t may have problems with unsolvable systems :-(

—  Also for ILP, there are other/smarter algorithms ...

—  For programming language problems, however, it seems to behave
quite well  :-)




