Script generated by TTT

Title: Seidl: Programmoptimierung (23.01.2013)

Date: Wed Jan 23 08:30:52 CET 2013

Duration: 91:59 min

Pages: 51

b
(.\,Mw—BsQ5 (-?Z):% QEC::,Q,_)l)

qf %hx—%/l—yx
=S N+ 5(x)

4 (o)

%Yﬁﬁ)

Idea 1:

— First, we introduce unique variable names.

— Then, we only substitute functions which are staticly within the
scope of the same global variables as the application :-)

— For every expression, we determine all function definitions with
this property :-)

808

L
(%5’6_—3&5 (-?2_)::.5 QEC::)QQ\’l)

o K

b
(n’,a-lﬂl-@{he}’{‘_.as’e@ ?Q a)ropt(g:fgﬂo)héﬁ%expres@@mé}ﬁﬁ 2\1 }
=) —
= x > /l + X

li]]? Example:
d (50, 7 N+ 5(x)

in let f— let r, =

in funy — .f

in [y U
k"‘ X2) € > x4 h
the application f = is not in the scope of T
O ,Q

e

—— we first duplicate the definition of 2, :

810

let

(. nel o =

-
inlet 7 =2

in let }‘é‘%t -U}Q‘\M y \% _—-/(—--

in funy — y+

\ o~ T

tlle inner definition becomes redundary !!!

D

let z=1
inlet =z, =2
inlet f=funy — y+ux
in fx

—— now we can apply inlining :

812

let z=1
inlet =, =2

inlet f=funy — y+

in let y==x

in y+a

Removing variable-variable-assignments, we arrive at:

813

let =1
inlet #, =2

inlet f=funy — y+ux

in let y==

in y+ux

Removing variable-variable-assignments, we arrive at:

813

let z=1
inlet 2, =2

inlet f=funy — y+

in

Idea 2:

— We apply our value analysis.
— We ignore global variables :-)

— We only substitute functions without free variables :-))

Example: The map-Function

let rec f=funz — z-z
and map=tfung — funz — matchz
with [] — []
| rims — gximapgas

in map f list

8

]

The parameter f inthe application map g is always
funz — z-z)

Therefore, map g can be specialized to a new function h
defined by:

h = letg=[funz — 2]

in funz — match z

with [] — []

| zims = gx T5

816

e The parameter f inthe application map g
funzr = z-2)

e Therefore, map g can be specialized to a new function

defined by:

Y\ _/%—
C‘/W h¥= letg=|funz — z-=x
L

in funz — matchz
with [] — []

| rirs — gx:

V"’\o\74___ —

The inner occurrence of map g can be replaced with h

—— fold-Transformation :-)
—

h = letg=funz — z- =z

in funx — match x
with [] — []

\ rirs = gxihwrs
et g -

Inlining the function ¢ yields:

h = letg=funz — z =z
in funz — match z
with [] — []
\ rixs = (letz=ux

in x*xx) has

818

Removing useless definitions and variable-variable assignments yields:

h = funz — matchz
with [] — [

| zizs — w=xihas

819

45 Deforestation

e Functional programmers love to collect intermediate results in lists
which are processed by higher-order functions.

e Examples of such higher-order functions are:

map = fun f — fun! — matchlwith[] — []

| ziws — fax:imap fas)

820

e The actual parameter f inthe application map g is always
funz —= z-2)

e Therefore, map g can be specialized to a new function h
defined hy:

h = detg=[funz — 4]

in funx — match z

with [[— []

TOXsS ——7 77 | Map g| s
g Pg

816

4.5 Deforestation

¢ Functional programmers love to collect intermediate results in lists
which are processed by higher-order functions.

e Examples of such higher-order functions are:

ooy Grnjins - = B 4

map = funf — funl — matchlwith[] — [] F oW oo

—

| axies — faimap fas)

820

s (ot 1eR) > o it >
A AA

filter = funp — funl — match ! with [] — []
polin. e —

| @:xs — if px then z :: filter p s
p——— _—_

else filter p zs)
L O, [| e d gx]

foldl = funf — funae — funl — matchlwith[] — a

.___#
| zuxs — foldl f (fax) xs)

QMP@F Q (<aixei ..)= Qq@m)el?&),,.

filtker = funp — funl — matchlwith [] — [] filter = funp — funl — match [with [] — []
| zi:zs — if px then z : filter p 25 | zixs — if px then z : filter p s
else filter p xs) else filter p xs)
foldl = funf — funa — fun! — match!with[] — a foldl = funf — funa — fun! — match!with[] — «
| s — foldl f (faz) xs) | zzs — foldl f (fax) xs)
& “ QR X (M da qﬂwxaﬁ
e P e ————
821 821
44 44 WKa ¥ 22y~ (4,4 qu
? ,% Example:
id = funz — = §
sum = foldl (+)0
length = let [map (fun z — 1)
comp = funf — fung — funz — [(gx) in comp sum f - 7
dev = funl — let s < “sum
comp; = fun f — fung — funz, — funz, —
- n = length [
— - -
fgz) T2 mean = si1/n
I = map (fun z — 2 — mean) |
comp, = funf — fung — funz — funz, — Ly — map (fanz— z-2) 1,
fa(g) S9 = sumly
in sy/n

82z

823

Example:
Observations:
sum = foldl (+)0
length = let f = map (funz — 1) Explicit recursion does no longer occur!
in compsum f The implementation creates unnecessary intermediate
- !
dev = funl — let s = suml data-structures!
n = lengthl)
length could also be implemented as:
mean = si/n
3 = map (fun .r—>r—m:fan)‘i length = let f = funa — funz — a+1
ly = map (funz = z-z) in foldl f 0
52 = sumly This implementation avoids to create intermediate lists !!!
in sy/n
823 824
Simplification Rules:
Observations: i [
SRR AR compid f = comp fid f
comp, fid = comp, fid 9 f
e Explicit recursion does no longer occur! . .
map id 3 id
e The implementation creates unnecessary intermediate comp (map f) (mapg) =P map(comp [g)
data-structures! —
comp (foldl f a) (map g) %‘fold\ (comp, fg)a
. s
length could also be implemented as:
length = let f = funa — funz — a+1
in foldl f 0
e This implementation avoids to create intermediate lists !!!

824

825

Simplification Rules:

” — funa — compid f = compfid = f
comp, fid = comp, fid = f
—-__—-‘-_-/‘
comp = fun f — fung — funz — [(gx) map lc .
comp (map f) (mapg) = map(comp f g)
foldl)y = foldl) .
comp;, = funf — fung — funz; — funaz, — comp (foldl f a) (map g) ._O [compzfg)a“
flg) za
comp, = funf = fung — funax; — funz, — Jg{g ' (O< ._> > OL) __) 0< _9 /&j _>
[AN £ A
822 825
Simplification Rules:
. fung — x compid f = compfid = f
comp, fid = comp, fid = f
- - id = id
comp = funf — fung — funz — f(gx) map e :
comp (map f) (mapg) = map(comp [g)
foldl = foldl -
comp; = fun f — fung — funz, — funz, — comp (foldl f a) (map g) oldl (comp, f 9) 2
flga)
comp, = funf — fung — funz, — funz, —
fai(gx) ——re

id = funzx — =z
comp = funf — fung — funz — f(gx)

comp; = funf mg — funz — Aunz —

-IJ

(g
(e TP, 'ZUJ ?m g “—'} fu %2’9
f o 4g xy) J‘W\ y >

5 (39

822

Simplification Rules:

compid f = compfid = f
comp, fid = comp, fid = f
map id = id

map (comp f g)
foldl (comp, f g) a

comp (map f) (map g)
comp (foldl f a) (map g)

comp (filter py) (filter po) filter (funz — if pyx then py =

else false)

comp (foldl f a) (filterp) = let h=funa — funx — if px then fax
empmm A R

else a

in foldl h a

826

Warning:

Function compositions also could occur as nested function calls ...

id = =
—_—
map id [=1
m——
map f (map g 1) = map (comp f g) !
foldl fa (mapgl) = foldl(comp, fg)al
filter py (filter po {) = filter (funz — pyz Apsz)l
foldl f a (filterpl) = let h=funa — funz — if pzthen faz
-.—-—'—'——_—-———______ﬂ

in foldl hal

——

827

Warning:

Function compositions also could occur as nested function calls ...

idz = x
—— —
map id [=

map (comp f g) 1
foldl (comp, f g) al
filter (funz — przApyx)l

—
map [map gl

foldl f a (map g)

filter p; (filter po 1)
foldl f a (filter p 1)

let h=funa — funz — if pzthen fax

else a
in foldlhal

827

Example, optimized:

Remarks:
sum = foldl (+) 0 \/
lenet! let | (+) (£ 0 e All intermediate lists have disappeared :-)
ength = et = compy un T —
in fold £ 0 e Only foldl remain — i.e., loops :-)) 1
1n TolC
dev ~ fumn E_;T . — aml ¢ Compositions of functions can be further simplified in the next step
- a —L—;—l—T , by Inlining,
i = length
/g e Inside dev, we then obtain:
méan = s/n
f = comp [ﬂw) g = funa — funz — let z; = x — mean
(fun z — = — mean =
2 — 4104
g = comp, (-l—)_j: in a-+t o
59 = foldlg 0!
.) e The result is a sequence of let-definitions !!!
in sa/n ‘p
(o + x,)+ AT
828 829
Example, optimized:
Remarks:
sum = foldl (+)0 _
lencth let f (+) (£ o) e All intermediate lists have disappeared -
ength = let = comp, un x
in foldl £0 e Only foldl remain — i.e., loops :-))
1n TolC
4 funl — et I e Compositions of functions can be further simplified in the next step
ev = un et s = sumi
' by Inlining.
n = lengthl —
/ e Inside dev, we then obtain:
mean = S1/n
‘-L = comp (funz = 2) g = funa — funz — let zy = z— mean
(fun ¢ — o — mean) e —
2 = T1-T
P = comp, (+) f in a-+
Sg = foldlg 01
. , e The result is a sequence of let-definitions !!!
in sy/n

828

829

Extension: Tabulation
Remarks:
If the list has been created by tabulation of a function, the creation of the
e All intermediate lists have disappeared - list sometimes can be avoided ...
e Only foldl remain — i.e., loops :-))
¢ Compositions of functions can be further simplified in the next step
by Inlining.

e Inside dev, we then obtain:

tabulate’ = funj — fun [— funn —
— — - _—
if 7 > n then []
g = funa — funz — let z; = x— mean -
else (fj) ::tabulate’ (7 4+ 1) fn
Ty = I+ —_—
tabulate = tabulate’ 0
in a-+

e The result is a sequence of let-definitions !!!

QM«(d’ I :&00, { / ~;(F 6"")3

829

Then we have: Extension (2): List Reversals
Sometimes, the ordering of lists or arguments is reversed:

W) (tabulate g) % tabulate (comp f g)

—
comp (foldl f a) (tabulate g) % loop (comp, f g) a rev’ = funa — funl —
——

match [with [] — a
| z2xs — rev (z:a) xs

where: rev = rev'[]

loop’ = funfj_% fun f — funa_— funiLﬁ\ comp rev rev — i
if j > nthena
Jd= £
else loop’ (j +1) f (iﬁi " swap = funf — funz — funy — fy=x
loop = loop’ 0
comp swap swap = id

831 83z

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’ = funa — funl —

match [with [] — a

| zozs = rev (zia) zs

rev = rev'[]
A_—
comp rev rev = id
swap = funf — funz — funy — fy=x

comp swap swap = id 1% 0
U (% =

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’ = funa — funl —

match [with [] — a

| zuas = rev (za)xs

rev = rev []

comp rev rev = id

e

swap = funf — funzr — funy = fyx
comp swap swap = id

832

foldr fa = comp @Lﬁ)/ﬁ\r/

PR

ijaﬁn a (M/&O =

Discussion:

e The standard implementation of foldr is not tail-recursive.

e The last equation decomposes a foldr into two tail-recursive
functions — at the price that an intermediate list is created.

e Therefore, the standard implementation is probably faster :-)

e Sometimes, the operation rev can also be optimized away ...

833

Extension: Tabulation

If the list has been created by tabulation of a function, the creation of the
list sometimes can be avoided ...

tabulate’ = funj — fun f — funn —
if j > n then []

Iy . x else (f j) :: tabulate’ (j+ 1) fn
taljatate = tabLyate’ 0
U —-—

K= = A [plxiox

ol D= D (XM@é&@E’L))

We have:

—
. comp rev 'ma = <com ma rev
id = funzx — =« — P (‘ P/ p(. PJ)
comp rev (filter p) = comp (filter p) rev
) comp rev (tabulate = rev_tabulate
comp = fun f — fung — funz — [(gx) —_ P { /) :———f-
comp;, = funf — fung — funz; — funaz, —
flg) za
Here, rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous to tabulate:
comp, = funf = fung — funax; — funz, —
(g x2)
comp (map f) (rev_tabulate g) = rev_tabulate (comp, f ¢)
comp (foldl f a) (rev_tabulate g) = rev_loop (comp, f g) a
-
822 834
We have:
comp rev (map f) = comp (ma rev . . .
prev{ . P f P ‘ P.J) Extension (3): Dependencies on the Index
comp rev (filter p) = comp (filter p) rev
comp rev (tabulate f) = rev_tabulate f
e Correctness is proven by induction on the lengthes of occurring lists.
e Similar composition results also hold for transformations which take
the current indices into account:
Here, rev_tabulate tabulates in reverse ordering. This function has mapi’ = funi — fun [— funl — matchlwith[] — []
properties quite analogous to tabulate: | xoas — fix)amap’ (i+1) fas
mapi = mapi' 0
comp (map f) (rev_tabulate g) = rev_tabulate (comp, f g)
comp (foldl f a) (rev_tabulate g) = rev_loop (comp, f g) a

834 835

