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Discussion:

Title: Seidl: Programmoptimierung (04-02-2013) e Originally, BDDs have been developped for circuit verification.

e Today, they are also applied to the verification of software ...

Date: Mon Feb 04 14:03:55 CET 2013

e A system state is encoded by a sequence of bits.

e A BDD then describes the set of all reachable system states.

Duration: 86:40 min

e Warning: Repeated application of Boolean operations may increase
the size dramatically !
Pages: 33 : : : .
e The variable ordering may have a dramatic impact ...
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Example: (21 ¢ 22) A (23 & 24) Discussion (2):

e In general, consider the function:
(zy ¢ @) A A (o 3 Top)
W.r.t. the variable ordering:
Ty < To < ... < Toy

the BDD has 3n  internal nodes.

W.r.t. the variable ordering:

T <X < Ton < Xg < T < ... < Top
the BDD has more than 2"  internal nodes !!

e A similar result holds for the implementation of Addition through
BDDs.
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Perspectives:  Further Properties of Programs

) .o Freeness:  Is X; possibly/always unbound ?
Discussion (3):
If X; is always unbound, no indexing for X; is required :-)

* Notall Boolean functions have small BDDs  :-( If X; is never unbound, indexing for X; is complete :-)

¢ Difficult functions:

Pair Sharing:  Are X;, X possibly bound to terms ¢;, t; with
O | multiplication; a o .
o ’ Vars(t;) N Vars(t;) #0 7
O | indirect addressing ...

Literals without sharing can be executed in parallel :-)

—— data-intensive programs cannot be analyzed in this way  :-(
Remark:
Both analyses may profit from Groundness !
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Example: Example:
bigger(X,Y) +— X = elephant,Y = horse bigger(X,Y) +— X = elephant,Y = horse
bigger(X,Y) +— X = horse,Y = donkey bigger(X,Y) +— X = horse, Y = donkey
bigger(X,Y) «— X = donkey,Y = dog bigger(X,Y) — X = donkey,Y = dog
bigger(X,Y) +— X = donkey,Y = monkey bigger(X,Y) +— X = donkey,Y = monkey
is_bigger(X.,Y) <+ bigger(X,Y) is_bigger(X,Y) <+ bigger(X,Y)
is_bigger(X,Y) <+ bigger(X, Z),is_bigger(Z,Y) is_bigger(X,Y) <+ bigger(X, Z),is_bigger(Z.Y)
+ is_bigger(elephant, dog) + is_bigger(elephant, dog)




A more realistic Example: A more realistic Example’

or—"
app(X.Y,Z) « X=[],Y=2Z app(X,Y, Z) + —[II} =Z
app(X,Y.Z) « X =[H|X'], Z=[H|Z', app(X",Y, Z") app(X,Y, Z) <« [H|Z}. app(X'. Y, Z") »
— app(X,[Y.d, [a. b, Z]) — app()&,[ .C},[a,b. Z]) ,
Remark:
X [] ——  the atom empty list
[H|Z] == hinary constructor application
y 4:' [a,b, Z] = Abbreviation for: [a|[b|[Z|[]]]
T T c
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Accordingly, a program p is constructed as follows: Procedural View of PllP—Pl‘(i)g[‘amS:
t o= a| X|_[ f(t,... tn) — |pr0cedure call |
g = plt,..., ty) | X =1 —[_procedure_|

c == p(Xy, ..., Xp) “m definition | — [body |
q

= g1, 0 term — lvalye |
P oE=c--Gmg unification —— | basic computation step
binding of variables| =—= side effect

e A term ¢t either is an atom, a (possibly anonymous) variable or a
constructor application. Warning: Predicate calls ...

e A goal g either is a literal, i.e., a predicate call, or a unification.

e do not return results!

e A clause ¢ consists of a head p(X1, ..., X) together with body
consisting of a sequence of goals. e  modify the caller solely through side effects :-)

e A program consists of a sequence of clauses together with a ¢ may fail. Then, the following definition is tried —

sequence of goals as query. backtracking




Inefficiencies:

Backtracking: e  The matching alternative must be searched for
—— Indexing

e  Since a successful call may still fail later, the stack can only be
cleared if there are no pending alternatives.
Unification: e The translation possibly must switch between build
and check several times.
e In case of unification with a variable, an Occur Check must be
performed.
Type Checking: ¢  Since Prolog is untyped, it must be checked at
run-time whether or not a term is of the desired form.

e  Otherwise, ugly errors could show up.

A more realistic Example:

app(X, Y, 2) « X=[,Y=2Z2
app(X.,Y,Z) « X =[H|X'|, Z=[H|Z', app(X". Y, Z")
+— app(X,[Y,d,[a, b Z])

Remark:
[] — the atom empty list
[H|Z] == hinary constructor application
[a,b, Z] = Abbreviation for: [a|[b|[Z|[]]]

)Lf‘*) X:/\/PL

Inefficiencies:

Backtracking: e  The matching alternative must be searched for
—— Indexing

e  Since a successful call may still fail later, the stack can only be
cleared if there are no pending alternatives.
Unification: e  The translation possibly must switch between build
and check several times.
e In case of unification with a variable, an Occur Check must be
performed.
Type Checking: e  Since Prolog is untyped, it must be checked at
run-time whether or not a term is of the desired form.

e Otherwise, ugly errors could show up.

Some Optimizations:
e Replacing last calls with jumps;

e  Compile-time type inference;

e Identification of deterministic predicates ...

Example:

4 — X=[,Y=2Z _
app(X,Y, Z) W« X =[H|X], Z=[H|Z
« app(la,b],[Y, ], Z)




Some Optimizations:

e  Replacing last calls with jumps;
¢  Compile-time type inference;

e Identification of deterministic predicates ...

Example:

app(X,Y,Z) « X=[l,Y=2
app(X,Y,Z) « X =[H|X], Z=[H|Z), app(X",Y, Z')
+ app([a,b],[Y,c], Z)

U
f é 4 a
Observation: J/ ]
e In PuP, functions must be simulated through predicates.

e  These then have designated input- and output parameters.

e Input parameters are those which are instantiated with a
variable-free term whenever the predicate is called.

These are also called ground.
e In the example, the first parameter of app is an input parameter.

e  Unification with such a parameter can be implemented as pattern
matching !

e Then we see that app in fact is deterministic !!!

I

51 Groundness Analysis

A variable X is called ground w.r.t. a program execution 7 starting
program entry and entering a program point v, if X is bound to a
variable-free term.

Goal:

e Find all variables which are ground whenever a particular program

point is reached !

e  Find all arguments of a predicate which are ground whenever the
predicate is called !

Some Optimizations:
e Replacing last calls with jumps;

e  Compile-time type inference;

e Identification of deterministic predicates ...

Example:

app(X, Y, Z) « X=[],Y=Z
app(X,Y,Z) « X =[H|X'], Z =[H|Z"], app(X", Y, Z")
«— app([a,b],[Y. €], Z)




5.1 Groundness Analysis

A variable X is called ground w.r.t. a program execution 7 starting
program entry and entering a program point v, if X is bound to a
variable-free term.

Goal:
¢  Find all variables which are ground whenever a particular program
point is reached !

e Find all arguments of a predicate which are ground whenever the
predicate is called !

[dea:

e  Describe groundness by values from B:
1 — wvariable-free term;
0 — term which contains variables.

e A set of variable assignments is described by Boolean functions  :-)

XY = Xisgroundiff Y is ground.
XANY — XandY are ground.
880

Idea:

¢  Describe groundness by values from B:
1 == variable-free term:
0 == term which contains variables.

e A setof variable assignments is described by Boolean functions :-)
X <Y — Xisgroundiff Y is ground.

X‘T'(l — X and Y are ground.

880

Idea (cont.):

e The constant function 0 denotes an unreachable program point.
e  Occurring sets of variable assignments are closed under substitution.

This means that for every occurring function ¢ # 0,

These functions are called positive.
e The set of all positive functions is called Pos.
Ordering: &1 C ¢o  if 1 = ¢o.

e In particular, the least elementis 0 :-)

881




Idea

¢  Describe groundness by values from B:
1 — wvariable-free term;
0 — term which contains variables.

e A set of variable assignments is described by Boolean functions  :-)

Idea (cont.):
e  The constant function 0 denotes an unreachable program point.

e  Occurring sets of variable assignments are closed under substitution.

This means that for every occurring function ¢ # 0,

These functions are called positive.

X oY = Xisgroundiff Y is ground. e The set of all positive functions is called Pos,
XAY — XandY are ground. Ordering: ¢ C ¢p  if &1 = ¢,
e In particular, the least element is 0 :-)
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Example: Remarks:
[J() 01.10, 11 e  Not all positive functions are monotonic !!!
‘ 1) § e  For k variables, there are 2° ' -+ 1 many functions.
00, 10,11 P - ‘ 01, 10;7H._ 00,01, 11 e  The height of the complete lattice is 2".
Y= X ) / XvY ; ' e  We construct an interprocedural analysis which for every predicate p
10.11 ‘ P \ 00, 11 ) determines a (monotonic) transformation
\:. Y (Xov \ [p]* : Pos — Pos
- ‘ 11 e Foreveryclause, p(Xy,...,Xz) <= g1,...,9n we obtain the
CXAY ) constraint:
i H_P]]:t' g EIXvnfcfl----:‘Xnm HQHHu((ﬂglﬂuL‘))
L_ 0 _,: m number of clause variables
882 883




Example: Remarks:
[_J\\“' 01,10, 11 e Not all positive functions are monotonic !!!
‘ ! e  For /: variables, there are 2° ~' + 1 many functions.
00, 10, 11 / e The height of the complete lattice is 2".
:\ Y- X e  We construct an interprocedural analysis which for every predicate p
determines a (monotonic) transformation
10,11 |~
(x) [P : Pos — Pos
) V 11 e Forevery clause, p(Xy,..., Xe) <= g1, -, gn We obtain the
T xay | constraint:
L )
I PlFey 2 3Xewt, ..o X [oa]* - ([n]F ) .. )
‘\7 0 m number of clause variables
882 883
) Remarks:
Abstract Unification:
e Notall positive functions are monotonic !!!
[X=tfv = ¢A(XeoXiAn. . AX) o e ‘
e  For /& variables, there are 2° ~' + | many functions.
if  Vars(t) ={X;,..., X, }. . e o
ars(t) = {4 R e The height of the complete lattice is 2".
e We construct an interprocedural analysis which for every predicate p
determines a (monotonic) transformation
Abstract Literal: [p]* : Pos — Pos
., o ) %?: e Foreveryclause, p(Xy,...,Xz) <= g1,...,9n we obtain the
la(s1,....s0)"v = combinel . (¥, [a]*( *?'-5;:7*"’)) constraint:

884

analogous to

rocedure

all !!

[Ple 2 3Xier,oo X [gal* (- ([0 0) )

m number of clause variables
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Abstract Unification:
[X=tFfv = wA(X LXl Ao ANXG)

if  Vars(t) ={Xy,..., X, }.

Abstract Literal:

la(si,. .. s)]* = c()ﬂ)k;lw_%[?y: [q]? (enter?

81,y

5;__7.1‘))

TorT
// analogous to procedure call !!

884

Thereby:

enter;

combinef, (¥, 1)

1X. ¢ =

ren¢g —

ren ¢

o[0/X]V 8[1/X]
O X1/ X1y, Xo/ X

S1X /X0, .. XX,
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