Script generated by TTT

Title: Seidl: Programmoptimierung (18.11.2015)

Date: Wed Nov 18 10:19:07 CET 2015

Duration: 90:50 min

Pages: 45

Now, (**) is proved by case distinction on the edge labels lab.

Let
$$s = (\rho, \mu) \ \Delta \ D$$
. In particular, $\bot \neq D$: $Vars \to \mathbb{Z}^{\top}$

Case x = e;:

$$\rho_{1} = \rho \oplus \{x \mapsto [e] \rho\} \quad \mu_{1} = \mu$$

$$D_{1} = \Omega \oplus \{x \mapsto [e]^{\sharp} D\}$$

$$\Longrightarrow (\rho_{1}, \mu_{1}) \Delta D_{1}$$

To prove (**), we show for every expression e:

$$(***)$$
 $([e] \rho)$ Δ $([e]^{\sharp}D)$ whenever $\rho \Delta D$

To prove (***), we show for every operator \square :

$$(x \square y) \ \Delta \ (x \square^{\sharp})^{\sharp})$$
 whenever $x \ \Delta \ x^{\sharp} \wedge y \ \Delta \ y^{\sharp}$

This precisely was how we have defined the operators \Box^{\sharp} .

Case
$$x = M[e]$$
;

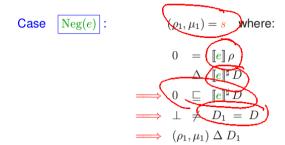
$$\rho_1 = \rho \oplus \{x \mapsto \mu(\llbracket e \rrbracket^{\sharp} \rho)\} \qquad \mu_1 = \mu$$

$$D_1 = D \oplus \{x \mapsto \top\}$$

$$\Longrightarrow \qquad (\rho_1, \mu_1) \Delta D_1$$

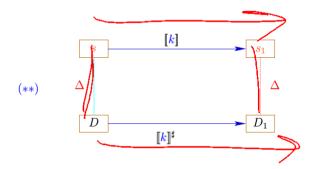
Case
$$M[e_1] = e_2;$$
:

$$\rho_1 = \rho \qquad \mu_1 = \mu \oplus \{ \llbracket e_1 \rrbracket^{\sharp} \rho \mapsto \llbracket e_2 \rrbracket^{\sharp} \rho \}
D_1 = D
\Longrightarrow (\rho_1, \mu_1) \Delta D_1$$



292

To prove (*), we show for every edge k:



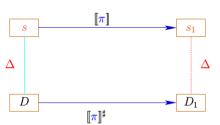
Then (*) follows by induction.

Case Pos(e): $(\rho_1, \mu_1) = s$ where: $0 \neq [e] \rho$ $\Delta [e]^{\sharp} D$ $\implies 0 \neq [e]^{\sharp} D$ $\implies \bot \neq D_1 = D$ $\implies (\rho_1, \mu_1) \Delta D_1$

293

We show:

(*) If $s \Delta D$ and $[\![\pi]\!] s$ is defined, then: $([\![\pi]\!] s) \ \Delta \ ([\![\pi]\!] ^\sharp D)$



We conclude: The assertion (*) is true.

The MOP-Solution:

$$\mathcal{D}^*[v] = \left| \left\{ \llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi : start \to^* v \right\} \right|$$

where $D_{\top} x = \top$ $(x \in Vars)$.

294

We conclude: The assertion (*) is true.

The MOP-Solution

$$\mathcal{D}^*[v] = \bigsqcup \{ \llbracket \pi
rbracket^\sharp D_\top \mid \pi : start o^* v \}$$

where $D_{\top} x = \top$ $(x \in Vars)$.

By (*), we have for all initial states s and all program executions π which reach v:

In order to approximate the MOP, we use our constraint system ...

We conclude: The assertion (*) is true.

The MOP-Solution:

$$\mathcal{D}^*[v] = \left| \left| \left\{ \llbracket \pi \rrbracket^{\sharp} \ D_{\top} \mid \pi : start \to^* v \right\} \right| \right|$$

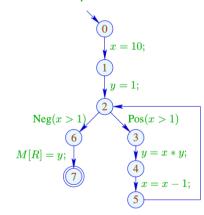
where $D_{\top} x = \top$ $(x \in Vars)$.

By (*), we have for all initial states s and all program executions π which reach v:

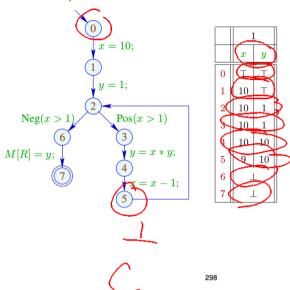
$$(\llbracket \pi \rrbracket s) \Delta (\mathcal{D}^*[v])$$

295

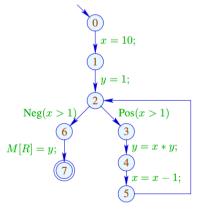
Example



Example

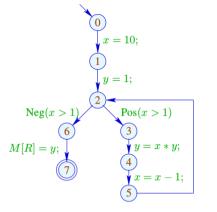


Example



	1		2		3	
	x	y	x	y	x	y
0	Т	Т	Т	Т		
1	10	Т	10	Т		
2	10	1	Т	Т		
3	10	1	Т	Т		
4	10	10	Т	Т	ditto	
5	9	10	Т	Т		
6	i		Т	Т		
7			Т	Т		

Example



	1		2		
	x	\boldsymbol{y}	\boldsymbol{x}	y	
0	Т	Т	Т	Т	
1	10	Т	10	Т	
2	10	1	Т	Т	
3	10	1	Т	Т	
4	10	10	Т	Т	
5	9	10	Т	Т	
6	-	L	Т	Т	
7	_	L	Т	Т	

299

Conclusion

Although we compute with concrete values, we fail to compute everything ...

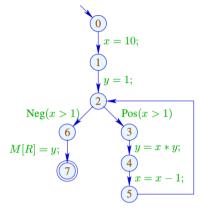
The fixpoint iteration, at least, is guaranteed to terminate:

For $\ n$ program points and m variables, we maximally need: $\ n\cdot (m+1)$ rounds.

Caveat

The effects of edge are not distributive !!!

Example



	1		2		3	
	x	\boldsymbol{y}	\boldsymbol{x}	y	x	y
0	Т	Т	Т	Т		
1	10	Т	10	Т		
2	10	1	Т	Т		
3	10	1	Т	Т		
4	10	10	Т	Т	dit	to
5	9	10	Т	Т		
6	i i		Т	Т		
7			Т	Т		

300

Counter Example: $f = [x = x + y]^{\sharp}$

$$\begin{array}{lll} \operatorname{Let} & D_1 &=& \{x\mapsto 2, y\mapsto 3\} \\ & D_2 &=& \{x\mapsto 3, y\mapsto 2\} \\ \\ \operatorname{Dann} & f \, D_1 \sqcup f \, D_2 &=& \{x\mapsto 5, y\mapsto 3\} \sqcup \{x\mapsto 5, y\mapsto 2\} \\ &=& \{x\mapsto 5, y\mapsto \top\} \\ &=& \{x\mapsto \top, y\mapsto \top\} \\ &=& f \, \{x\mapsto \top, y\mapsto \top\} \\ &=& f \, \{D_1 \sqcup D_2\} \end{array}$$

Although we compute with concrete values, we fail to compute everything ...

The fixpoint iteration, at least, is guaranteed to terminate:

For $\ n$ program points and $\ m$ variables, we maximally need: $\ n\cdot (m+1)$ rounds.

Caveat

The effects of edge are not distributive !!!

301

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \sqsubseteq \mathcal{D}[v]$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

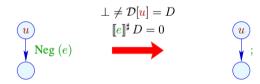
As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π which reaches v:

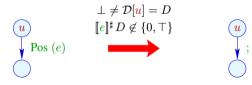
$$(\llbracket \boldsymbol{\pi} \rrbracket (\rho, \mu)) \ \Delta \ (\mathcal{D}[\boldsymbol{v}])$$

whenever $\llbracket \pi \rrbracket (\rho, \mu)$ is defined.

304

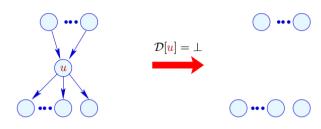
Transformation 4 (cont.): Removal of Dead Code





Transformation 4:

Removal of Dead Code





305

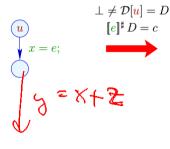
Extensions

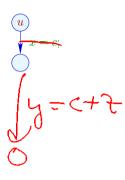
 Instead of complete right-hand sides, also subexpressions could be simplified:

$$x + (3 * y) \xrightarrow{\{x \mapsto \top, y \mapsto 5\}} x + 15$$

... and further simplifications be applied, e.g.:

Transformation 4 (cont.): Simplified Expressions





307

Extensions

 Instead of complete right-hand sides, also subexpressions could be simplified:

$$x + (3 * y) \xrightarrow{\{x \mapsto \top, y \mapsto 5\}} x + 15$$

... and further simplifications be applied, e.g.:

308

Extensions

 Instead of complete right-hand sides, also subexpressions could be simplified:

$$x + (3 * y) \xrightarrow{\{x \mapsto \top, y \mapsto 5\}} x + 15$$

... and further simplifications be applied, e.g.:

20

So far, the information of conditions has not yet be optimally exploited:

if
$$(x == 7)$$

 $y = x + 3$;

Even if the value of x before the if statement is unknown, we at least know that x definitely has the value 7 — whenever the then-part is entered.

Therefore, we can define:

$$[\operatorname{Pos}(x == e)]^{\sharp} D = \left\{ \begin{array}{ll} D & \text{if} & [\![x == e]\!]^{\sharp} D = 1 \\ \\ \bot & \text{if} & [\![x == e]\!]^{\sharp} D = 0 \\ \\ \frac{D_1}{} & \text{otherwise} \end{array} \right.$$

where

$$\underline{D_1} = D \oplus \{x \mapsto (D \, x \sqcap \llbracket e \rrbracket^{\sharp} \, D)\}$$

The effect of an edge labeled $Neg(x \neq e)$ is analogous.

Our Example

Neg
$$(x == 7)$$
 Pos $(x == 7)$ $y = x + 3;$

310

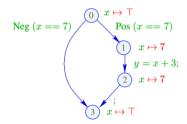
The effect of an edge labeled $\operatorname{Neg}(x \neq e)$ is analogous.

Our Example

Neg
$$(x==7)$$
 Pos $(x==7)$ Pos $(x==7)$ $y=10;$ $y=10;$

The effect of an edge labeled $Neg(x \neq e)$ is analogous.

Our Example



311

1.5 Interval Analysis

Observation

 Programmers often use global constants for switching debugging code on/off.

 \Longrightarrow

Constant propagation is useful!

 In general, precise values of variables will be unknown perhaps, however, a tight interval !!!

Example

for
$$(i=0)i < 42;i++)$$

if $(0) \le i \land t < 42)$ {

 $A_1 = A + i;$
 $M[A_1] = i;$
}

// A start address of an array

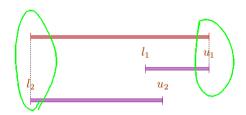
// if the array-bound check

The inner check is superfluous.

314

Thus:

$$[l_1, u_1] \sqcup [l_2, u_2] = [l_1 \sqcap l_2] u_1 \sqcup u_2$$

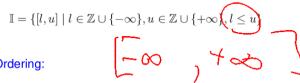


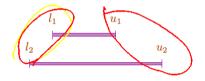
ldea 1

Determine for every variable x an (as tight as possible) interval of possible values:

$$\mathbb{I} = \{[l, u] \mid l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{+\infty\}, l \leq u\}$$

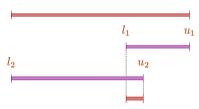
Partial Ordering:





315

Thus:



Caveat

- I is not a complete lattice!
- I has infinite ascending chains, e.g.,

$$[0,0] \sqsubset [0,1] \sqsubset [-1,1] \sqsubset [-1,2] \sqsubset \dots$$

Description Relation:

$$z \Delta [l, u]$$

$$z \Delta [l, u]$$
 iff $l \le z \le u$

Concretization:

$$\gamma[l, u] = \{ z \in \mathbb{Z} \mid l \le z \le u \}$$

319

Caveat

- → I is not a complete lattice!
- I has infinite ascending chains, e.g.,

$$[0,0] \sqsubset [0,1] \sqsubset [-1,1] \sqsubset [-1,2] \sqsubset \dots$$

Description Relation:

$$z \Delta [l, u]$$

$$z \mathrel{\Delta} [l,u] \qquad \text{iff} \qquad l \leq z \leq u$$

Concretization:

$$\gamma[l, u] = \{ z \in \mathbb{Z} \mid l \le z \le u \}$$

Caveat

- I is not a complete lattice!
- I has infinite ascending chains, e.g.,

$$[0,0] \sqsubset [0,1] \sqsubset [-1,1] \sqsubset [-1,2] \sqsubset \dots$$

318

Example

$$\gamma[0,7] = \{0,\ldots,7\}$$

 $\gamma[0,\infty] = \{0,1,2,\ldots,\}$

Computing with intervals: Interval Arithmetic

Addition:

$$\begin{array}{lll} [l_1,u_1] \,+^{\sharp}\,\,[l_2,u_2] &=& [l_1+l_2,u_1+u_2] & & \text{where} \\ \\ -\infty\,+_- &=& -\infty \\ \\ +\infty\,+_- &=& +\infty \\ \\ & /\!/ & -\infty\,+\infty & \text{cannot occur !} \end{array}$$

Negation:

$$-^{\sharp}[l,u] = [-u,-l]$$

Multiplication:

Example

321

Equality:

$$[l_{1}, u_{1}] = =^{\sharp} [l_{2}, u_{2}] = \begin{cases} [1, 1] & \text{if } (l_{1} = u_{1} = l_{2} = u_{2}) \\ [0, 0] & \text{if } (u_{1} < l_{2} \lor u_{2} < l_{1}) \\ [0, 1] & \text{otherwise} \end{cases}$$

Division: $[l_1, u_1] /^{\sharp} [l_2, u_2] = [a, b]$

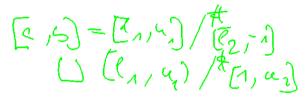
 If 0 is not contained in the interval of the denominator, then:

$$a = l_1/l_2 \sqcap l_1/u_2 \sqcap u_1/l_2 \sqcap u_1/u_2$$

$$b = l_1/l_2 \sqcup l_1/u_2 \sqcup u_1/l_2 \sqcup u_1/u_2$$

• If: $l_2 \le 0 \le u_2$, we define:

$$[a,b] = [-\infty, +\infty]$$



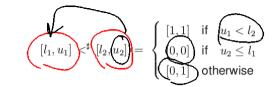
322

Equality:

$$[l_1, u_1] == ^{\sharp} [l_2, u_2] \ = \left\{ \begin{array}{ll} [1, 1] & \text{if} \quad l_1 = u_1 = l_2 = u_2 \\ [0, 0] & \text{if} \quad u_1 < l_2 \lor u_2 < l_1 \\ [0, 1] & \text{otherwise} \end{array} \right.$$

Example

Less:



325

Less:

$$[l_1,u_1]<^{\sharp}[l_2,u_2] \ = \ \left\{ egin{array}{ll} [1,1] & \mbox{if} & u_1 < l_2 \ [0,0] & \mbox{if} & u_2 \leq l_1 \ [0,1] & \mbox{otherwise} \end{array}
ight.$$

Example

