Script generated by TTT Then we have:

comp (map f) (tabulate g) tabulate (comp f g)

comp (foldl f a) (tabulate g) = loop (comp, f g) a

Title: Seidl: Programmoptimierung (28.01.2016)

Date: Thu Jan 28 08:40:22 CET 2016 where

Duration: 84:30 min loop = funj — funf — funa — funn —

if j > n thena

Pages: 40 else loop’ (j+1) f(faj))n

loop = loop’0
Extension (2): List Reversals 1!“- \% F&p‘f
: ax — % f,‘{) foldr fa = comp (foldl (swap f) a) rev

Sometimes, the ordering of lists or arguments is reversed:

~
rev/ = funa — fun! — fwr (Q =l fyu“’\ Oﬁs.l\

match [with [| = a Discussion C} %) O~ I A ‘,', ?(3 —&

| z:xs — rev' (z::a) zs \ .{.}((‘ 'ﬁ)m\" { Q ‘K‘S)

rev = revl] e The standard implementation of foldr is not tail-recursive.
_ ¢ The last equation decomposes a foldr into two tail-recursive
comp rev rev = id functions — at the price that an intermediate list is created.
e Therefore, the standard implementation is probably faster.
swap = fnj o fanz = funy 5 Sy e Sometimes, the operation rev can also be optimized away ...
comp swap swap = id

834 835

We have:

comp rev (map f) = comp (map f) rev
comp rev (filter p) = comp (filter p) rev
comp rev (tabulate f) = rev_tabulate f

Here, rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous to tabulate:

foldr fa = comp (foldl (swap f) a) rev

Discussion

e The standard implementation of foldr is not tail-recursive.

e The last equation decomposes a foldr into two tail-recursive
functions — at the price that an intermediate list is created.

e Therefore, the standard implementation is probably faster.

e Sometimes, the operation rev can also be optimized away ...

835

We have:

comp rev (filter p)
comp rev (tabulate f)

comp (map f) (rev_tabulate g) = rev_tabulate (comp, f g)
comp (foldl f @) (rev_tabulate g) = rev_loop (comp, f g) a
836
We have:
comp rev (map f) = comp (map f) rev

= comp (filter p) rev

= rev_tabulate f

comp rev (map f)
comp rev (filter p)
comp rev (tabulate f)

= comp (map f) rev
= comp (filter p) rev

= rev_tabulate f

Here, rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous to tabulate:

comp (map f) (rev_tabulate g) = rev_tabulate (comp, f g)
comp (foldl f a) (rev_tabulate g) = rev_loop (comp, f g) a

836

Here, rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous to tabulate:

comp (map f) (rev_tabulate g) = rev_tabulate (comp, f g)
comp (foldl f a) (rev_tabulate ¢) = rev_loop (comp, f g) a

836

Extension (3): Dependencies on the Index

¢ Correctness is proven by induction on the lengthes of
occurring lists.

e Similar composition results also hald for transformations
which take the current indices into account:
mapi’ = funi — fun f — fun! — match! with [] - []

| zuzs — fixzzmapi (i+1) fas

mapi = mapi’' 0

837
compi = funf — fung — funi — funz — fi(gix)
compiy = fun f — fung — fun: — funz; — funz, —

fil(giz) xg

compi, = funf — fung — fun: — funz;, — funz, —

fizi(gtxs)

cnp; = funf — fung — fun: — funz;, — funz, —
fizy(gz2)
cmp, = funf — fung — fun? — funz; — funz; —

f oy (gixs)

839

Analogously, there is index-dependent accumulation:

foldi’ = funi — funf — funa — funl —
match [with [|] — «
|zxs — foldli (14 1) f (fiazx) xs
foldli = foldli' 0

For composition, we must take care that always the same indices
are used. This is achieved by:

838

Then

comp (mapi f) (map g) mapi (comp, f g)
comp (map f) (mapi g) = mapi(comp f g)
comp (mapi f) (mapi g) = mapi(compi f g)
comp (foldli f a) (map g)
(
(
(

comp (foldl f a) (mapi g) foldli (cmp, f g) a

(
(
foldli (cmp, f g)a
(
comp (foldli f a) (mapi g) foldli (compiy f g) a
leth= funa — funi —
fial(gi)

in loop h a

comp (foldli f a) (tabulate g)

840

Then Discussion

comp (mapi f) (map g) = mapi(comp, f ¢) e Warning: index-dependent transformations may not
comp (map f) (mapi g) = mapi(comp [g) commute with rev or filter.
comp (mapi f) (mapi g) = mapi(compi f g) e All our rules can only be applied if the functions id, map, mapi,
comp (foldli f a) (map g) = foldli (cmp, f g) a foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ...
comp (foldl a) (mapi g) — foldli(cmp, f g)a are proylded by a standard library: Only then the algebraic
properties can be guaranteed !!!
comp (foldli f a) (mapi g) = foldli (compi, f g) a o .))
) ‘ e Similar simplification rules can be derived for any kind of
comp (foldli f a) (tabulate g) = leth= funa — funi — tree-like data-structure tree o .
. fialgi) e These also provide operations map, mapi and foldl, foldli with
in loop ha corresponding rules.
e Further opportunities are opened up by functions to_list and
from_list ...
840 841
Then Discussion
comp (mapi f) (map g) = mapi(comp, [g) e Warning: index-dependent transformations may not
comp (map f) (mapi g) = mapi(comp f g) commute with rev or filter.
comp (mapi f) (mapi g) = mapi(compi f g) e All our rules can only be applied if the functions id, map, mapi,
comp (foldli f a) (map g) = foldli(cmp, f g)a foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ...
comp (fold! f) (mapi g) — foldli (cmp, f g) a are prO\.nded by a standard library: Only then the algebraic
properties can be guaranteed !!!
comp (foldli f a) (mapi g) = foldli (compiy f g) a . .) .
o Similar simplification rules can be derived for any kind of
comp (foldli f a) (tabulate g) = leth= funa — funi —

tree-like data-structure tree v .

‘ fia(gi) e These also provide operations map, mapi and foldl, foldli with
in loop ha corresponding rules.

e Further opportunities are opened up by functions to_list and
from_list ...

840 841

Example

type treeacx =

map

foldl =

Caveat

Leaf | Node a (tree) (tree a)
fun f — funt¢ — match ¢ with Leaf — Leaf
| Nodexlr — let I' = mapfl
!

r = mapfr
in Node (fz) I’

fun f -+ funa — funi? — match ¢ with Leaf — a
|Node z lr — leta =foldl fal
infoldl f (fa'z) r

842

Not every natural equation is valid:

comp to_list from_list

id

comp from_list to_list # id

comp to_list (map f)
comp from_list (map f)

comp (foldl f a) to_list

comp (map f) to_list
comp (map f) from_list
foldl f a

comp (foldl f a) from_list = foldl f a

844

to listt = funa — funt¢ — match ¢t with Leaf — «a
| Nodeztita — let o = to list' ats

in to_list’ (z::a') t

to_list = to_list' []

from list = funl — matchl
with [| — Leaf

| x:xzs — Node x Leaf (from_list x3)

46 CBN vs. CBV: Strictness Analysis

Problem

e Programming languages such as Haskell evaluate
expressions for let-defined variables and actual parameters
not before their values are accessed.

e This allows for an elegant treatment of (possibly) infinite lists
of which only small initial segments are required for
computing the result.

e Delaying evaluation by default incures, though, a non-trivial
overhead ...

846

In this case, there is even a rev:

rev = funt —
match ¢ with Leaf — Leaf
| Nodexzt t: — let s5 = reviy
Ss = revis

in Node = s3 51

comp to_list rev = comp rev to_list

comp from_list rev # comp rev from_list

845

Example
from = funn — n:from(n+1)
take = funk — funs — if k <0 then|]
else match s with[] — []
| zxs — xotake (k

847

1) zs

46 CBN vs. CBV: Strictness Analysis
Problem

e Programming languages such as Haskell evaluate
expressions for let-defined variables and actual parameters
not before their values are accessed.

e« This allows for an elegant treatment of (possibly) infinite lists
of which only small initial segments are required for
computing the result.

« Delaying evaluation by default incures, though, a non-trivial
overhead ...

846

Then CBN yields

take 5 (from 0) = [0,1,2,3, 4]

— whereas evaluation with CBV does not terminate !!!

848

Then CBN yields

take 5 (from 0) = [0, 1,2, 3, 4]
— whereas evaluation with CBV does not terminate !!!

On the other hand, for CBN, tail-recursive functions may require
non-constant space 7?7

fac2 = funz — funae — fz <0t

hen a
else fac2 %

849

Discussion

e The multiplications are collected in the accumulating
parameter through nested closures.

e Only when the value of a call fac2 = 1 is accessed, this
dynamic data structure is evaluated.

e Instead, the accumulating parameter should have been
passed directly by-value !!!

e This is the goal of the following optimization ...

850

Simplification

e Atfirst, we rule out data structures, higher-order functions,
and local function definitions.

o We introduce an unary operator # which forces the
evaluation of a variable.

e Goal of the transformation is to place # at as many places as
possible ...

851

Simplification

e Atfirst, we rule out data structures, higher-order functions,
and local function definitions.

¢ We introduce an unary operator # which forces the
evaluation of a variable.

e Goal of the transformation is to place # at as many places as
possible ...

851

Simplification

e At first, we rule out data structures, higher-order functions,
and local function definitions.

« We introduce an unary operator # which forces the
evaluation of a variable.

e Goal of the transformation is to place # at as many places as
possible ...

o
|

clz|eiOyen| Oye if eg then e, else ey

ft.’l e Bk

|let 71 = ¢ ine

x| #x
fzi .. xp=e
P w= letrecand d; ... and d, in e
852
Idea (cont.)

¢ We determine the abstract semantics of all functions.
o Forthat, we put up a system of equations ...

Auxiliary Function

[e]* : (Vars = B) = B

[]F p =1

[«]F p = px

[Oielfp = [efFp

[e1 Oz €] p = [alfpA e p

[if o thene, else ex]* p = [eo]f p A ([er]* p V [e2] p)
[fer...elfp = UF{alfp) ... ([elf p)

854

Idea

Describe a k-ary function
frint — ... — int

by a function
I/fF:B—...=B
e Omeans: evaluation does definitely not terminate.
¢ 1 means: evaluation may terminate.

e [fIF0=0 means:If the function call returns a value, then
the evaluation of the argument must have terminated and
returned a value.

— f is strict.

853

Idea

Describe a k-ary function
fiint — ... — int

by a function
FPB—o... 5B
e Omeans: evaluation does definitely not terminate.
e 1means: evaluation may terminate.

e [fIF0=0 means:If the function call returns a value, then
the evaluation of the argument must have terminated and
returned a value.

— f is strict.

853

Idea (cont.)

« We determine the abstract semantics of all functions.

e For that, we put up a system of equations ...

Auxiliary Function

([exTF)

[e]t i (Vars - B)— B

[d]f o -1

[z]F p = pr

[O1e]fp = [e]fp

[ex Oy €] p = [edf pAfea] p

[if eo thene, else ex]* p = [eglf p A ([er]* p V [e2]* p)

[fer...efp = [fI*([elf o) ...
Example

For fac2, we obtain:

[[fac2]|n bl b2 = bl M (bgv
[[Fac2]|“ by (bl A bg))

Fixpoint iteration yields:

0| funxz — funae — 0
1| funz — funae — x A a

2| funxz — funa — z A a

856

lel* (p @ {1 = [ed] p})
[let #z1 =erine]f p = ([ea]? p) A ([e]* (p® {1 = 1}))

[let z1 = e1 ine]? p

System of Equations

1 bk:[{ﬁi]]n {1‘}?—>bj |_]:1,,k}, i:l,...,n,bl,...,bkEB

are the functions

. 'hewokowns of the system gféquation i
[fi]* of the individual entrigs [f;]%: ... by i§ the value table.
A

All right-hand sides are mohetonicl
Consequently, there is a least solution.

The complete lattice B — ... — B has height O(2F).

855

Then CBN yields

take 5 (from 0) = [0,1,2,3, 4]

whereas evaluation with CBV does not terminate !!!

On the other hand, for CBN, tail-recursive functions may require
non-constant space 7?77

fac2 = funz — funa — if £ <0 thena

>1< : qu\(a/[?] (>< \ (8

849

Example

For fac2, we obtain:

[[fac2]|n bl b2 = bl A (b Vi
i 362]1'1 by (bl N bz))

‘3

Fixpoint iteration yields:

0| funz — funa — 0
1| funz — funa — z Aa

2| funz — funa — z A a

856

Correctness of the Analysis

¢ The system of equations is an abstract denotational
semantics.

e The denotational semantics characterizes the meaning of
functions as least solution of the corresponding equations for
the concrete semantics.

e Forvalues, the denotational semantics relies on the complete
partial ordering Z,.

e For complete partial orderings, Kleene’s fixpoint theorem is
applicable.

e Asdescription relation A we use:

1 A0 and z A1 forzez[

858

We conclude:

e The function fac2 is strict in both arguments, i.e., if evaluation
terminates, then also the evaluation of its arguments.

e Accordingly, we transform:

fac2 = funxz — funa — if r <0thena
else let #2' = z-1
#ad = z-a

in fac2 7' o

857

Extension: Data Structures

e Functions may vary in the parts which they require from a
data structure ...

hd = funl! — matchlwithz::zs — =z

e hd only accesses the first element of a list.
e length only accesses the backbone of its argument.

e rev forces the evaluation of the complete argument — given
that the result is required completely ...

859

Extension of the Syntax

We additionally consider expression of the form:
|

e = ... |

€1 1 €Eg

match ey with [| —

1

| zzs — e

Top Strictness

€,65) [match eq with (21, 25) — e

o We assume that the program is well-typed.

¢ We are only interested in top constructors.

e Again, we model this property with (monotonic) Boolean

functions.

e For int-values, this coincides with strictness.

e We extend

[e] p with rules for case-distinction ...

860

