Script generated by TTT

Title: Seidl: Programmoptimierung (03.02.2016)

Date: Wed Feb 03 10:21:20 CET 2016

Duration: 81:49 min

Pages: 41

System of Equations

$$[\![f_i]\!]^{\sharp}b_1 \ldots b_k = [\![e_i]\!]^{\sharp} \{x_j \mapsto b_j \mid j = 1, \ldots, k\}, \qquad i = 1, \ldots, n, b_1, \ldots, b_k \in \mathbb{B}$$

- The unknowns of the system of equations are the functions $[\![f_i]\!]^\sharp$ or the individual entries $[\![f_i]\!]^\sharp b_1 \ldots b_k$ in the value table.
- All right-hand sides are monotonic!
- Consequently, there is a least solution.
- The complete lattice $\mathbb{B} \to \ldots \to \mathbb{B}$ has height $\mathcal{O}(2^k)$.

Example

```
\begin{array}{lll} {\sf from} & = & {\sf fun} \; n \; \to \; \; n :: {\sf from} \; (n+1) \\ \\ {\sf take} & = & {\sf fun} \; k \; \to \; {\sf fun} \; s \; \to \; \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & & = & {\sf lin} \; k \; \to \; {\sf fun} \; s \; \to \; \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & & = & {\sf lin} \; k \; \to \; {\sf fun} \; s \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & = & {\sf lin} \; k \; \to \; s \; {\sf if} \; k \leq 0 \; {\sf then} \; [\,] \\ \\ & = & {\sf lin} \; k \; \to \; s \; {\sf in} \; k \; {\sf in
```

847

Extension: Data Structures

 Functions may vary in the parts which they require from a data structure ...

```
\mathsf{hd} = \mathsf{fun}\,l \to \mathsf{match}\,l \,\mathsf{with}\,x :: xs \to x
```

- hd only accesses the first element of a list.
- length only accesses the backbone of its argument.
- rev forces the evaluation of the complete argument given that the result is required completely ...

Extension: Data Structures

 Functions may vary in the parts which they require from a data structure ...

```
\mathsf{hd} = \mathsf{fun}\,l \to \mathsf{match}\,l \,\mathsf{with}\,x :: xs \to x
```

- hd only accesses the first element of a list.
- length only accesses the backbone of its argument.
- rev forces the evaluation of the complete argument given that the result is required completely ...

859

Idea (cont.)

- We determine the abstract semantics of all functions.
- For that, we put up a system of equations ...

Auxiliary Function

$$\begin{split} \llbracket e \rrbracket^{\sharp} & : & (\mathit{Vars} \to \mathbb{B}) \to \mathbb{B} \\ \llbracket c \rrbracket^{\sharp} \rho & = & 1 \\ \llbracket x \rrbracket^{\sharp} \rho & = & \rho x \\ \llbracket \Box_{1} e \rrbracket^{\sharp} \rho & = & \llbracket e \rrbracket^{\sharp} \rho \\ \llbracket e_{1} \Box_{2} e_{2} \rrbracket^{\sharp} \rho & = & \llbracket e_{1} \rrbracket^{\sharp} \rho \wedge \llbracket e_{2} \rrbracket^{\sharp} \rho \\ \llbracket \mathbf{if} \ e_{0} \ \mathbf{then} \ e_{1} \ \mathbf{else} \ e_{2} \rrbracket^{\sharp} \rho & = & \llbracket e_{0} \rrbracket^{\sharp} \rho \wedge (\llbracket e_{1} \rrbracket^{\sharp} \rho \vee \llbracket e_{2} \rrbracket^{\sharp} \rho) \\ \llbracket f \ e_{1} \ \dots \ e_{k} \rrbracket^{\sharp} \rho & = & \llbracket f \rrbracket^{\sharp} (\llbracket e_{1} \rrbracket^{\sharp} \rho) \dots (\llbracket e_{k} \rrbracket^{\sharp} \rho) \end{aligned}$$

Extension of the Syntax

We additionally consider expression of the form:

```
e ::= \dots \mid [] \mid e_1 :: e_2 \mid \mathbf{match} \mid e_0 \mathbf{with} \mid ] \rightarrow e_1 \mid x :: xs \rightarrow e_2
\mid (e_1, e_2) \mid \mathbf{match} \mid e_0 \mathbf{with} \mid (x_1, x_2) \rightarrow e_1
```

Top Strictness

- We assume that the program is well-typed.
- We are only interested in top constructors.
- Again, we model this property with (monotonic) Boolean functions.
- For int-values, this coincides with strictness.
- We extend $\llbracket e \rrbracket^{\sharp} \rho$ with rules for case-distinction ...

860

Extension of the Syntax

We additionally consider expression of the form:

```
e ::= \dots \mid [] \mid e_1 :: e_2 \mid \mathbf{match} \mid e_0 \mathbf{with} \mid ] \rightarrow e_1 \mid x :: xs \rightarrow e_2
\mid (e_1, e_2) \mid \mathbf{match} \mid e_0 \mathbf{with} \mid (x_1, x_2) \rightarrow e_1
```

Top Strictness

- We assume that the program is well-typed.
- We are only interested in top constructors.
- Again, we model this property with (monotonic) Boolean functions.
- For int-values, this coincides with strictness.
- We extend $\llbracket e \rrbracket^{\sharp} \rho$ with rules for case-distinction ...

- The rules for match are analogous to those for if.
- In case of ::, we know nothing about the values beneath the constructor; therefore $\{x, xs \mapsto 1\}$.
- We check our analysis on the function app ...

861

Total Strictness

Assume that the result of the function application is totally required. Which arguments then are also totally required?

We again refer to Boolean functions ...

$$\begin{split} & [\![\mathsf{match}\ e_0\ \mathsf{with}\ [\!]\ \to\ e_1\ |\ x, :: xs\ \to\ e_2]\!]^\sharp\,\rho\ =\ \mathsf{let}\ b = [\![e_0]\!]^\sharp\,\rho\ \mathsf{in} \\ & b \wedge [\![e_1]\!]^\sharp\,\rho \vee [\![e_2]\!]^\sharp\,(\rho \oplus \{x \mapsto b, xs \mapsto 1\}) \vee [\![e_2]\!]^\sharp\,(\rho \oplus \{x \mapsto 1, xs \mapsto b\}) \\ & [\![\mathsf{match}\ e_0\ \mathsf{with}\ (x_1, x_2)\ \to\ e_1]\!]^\sharp\,\rho \qquad \qquad =\ \mathsf{let}\ b = [\![e_0]\!]^\sharp\,\rho\ \mathsf{in} \\ & [\![e_1]\!]^\sharp\,(\rho \oplus \{x_1 \mapsto 1, x_2 \mapsto b\}) \vee [\![e_1]\!]^\sharp\,(\rho \oplus \{x_1 \mapsto b, x_2 \mapsto 1\}) \\ & [\![[]]\!]^\sharp\,\rho \qquad \qquad =\ 1 \\ & [\![e_1 :: e_2]\!]^\sharp\,\rho \qquad \qquad =\ [\![e_1]\!]^\sharp\,\rho \wedge [\![e_2]\!]^\sharp\,\rho \\ & [\![e_1, e_2]\!]^\sharp\,\rho \qquad \qquad =\ [\![e_1]\!]^\sharp\,\rho \wedge [\![e_2]\!]^\sharp\,\rho \end{aligned}$$

Example

```
\mathsf{app} = \mathsf{fun}\,x \to \mathsf{fun}\,y \to \mathsf{match}\,x\,\mathsf{with}\,[\,] \to y\mid x :: xs \to x :: \mathsf{app}\,xs\,y
```

Abstract interpretation yields the system of equations:

$$[app]^{\sharp} b_1 b_2 = b_1 \wedge (b_2 \vee 1)$$

= b_1

We conclude that we may conclude for sure only for the first argument that its top constructor is required.

862

Total Strictness

Assume that the result of the function application is totally required. Which arguments then are also totally required?

We again refer to Boolean functions ...

```
 \begin{split} & [\![\mathsf{match}\ e_0\ \mathsf{with}\ [\!]\ \to \ e_1\ |\ x, :: xs \ \to \ e_2]\!]^\sharp \ \rho \ = \ \mathsf{let}\ b = [\![e_0]\!]^\sharp \ \rho \ \mathsf{in} \\ & b \wedge [\![e_1]\!]^\sharp \ \rho \vee [\![e_2]\!]^\sharp \ (\rho \oplus \{x \mapsto b, xs \mapsto 1\}) \vee [\![e_2]\!]^\sharp \ (\rho \oplus \{x \mapsto 1, xs \mapsto b\}) \\ & [\![\mathsf{match}\ e_0\ \mathsf{with}\ (x_1, x_2) \ \to \ e_1]\!]^\sharp \ \rho \\ & = \ \mathsf{let}\ b = [\![e_0]\!]^\sharp \ \rho \ \mathsf{in} \\ & [\![e_1]\!]^\sharp \ (\rho \oplus \{x_1 \mapsto 1, x_2 \mapsto b\}) \vee [\![e_1]\!]^\sharp \ (\rho \oplus \{x_1 \mapsto b, x_2 \mapsto 1\}) \\ & [\![[]\!]\!]^\sharp \ \rho \\ & = \ [\![e_1]\!]^\sharp \ \rho \wedge [\![e_2]\!]^\sharp \ \rho \\ & [\![e_1 :: e_2]\!]^\sharp \ \rho \\ & = \ [\![e_1]\!]^\sharp \ \rho \wedge [\![e_2]\!]^\sharp \ \rho \end{split}
```


Discussion

- The rules for constructor applications have changed.
- Also the treatment of **match** now involves the components z and x_1, x_2 .
- Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

$$[[app]^{\sharp} \ b_1 \ b_2 = b_1 \wedge b_2 \vee b_1 \wedge [[app]^{\sharp} \ 1 \ b_2 \vee [[app]^{\sharp} \ b_1 \ b_2$$

$$= b_1 \wedge b_2 \vee b_1 \wedge [[app]^{\sharp} \ 1 \ b_2 \vee [[app]^{\sharp} \ b_1 \ b_2$$

Total Strictness

Assume that the result of the function application is totally required. Which arguments then are also totally required?

We again refer to Boolean functions ...

```
 \begin{split} & [\![\mathsf{match}\ e_0\ \mathsf{with}\ [\!]\ \to\ e_1\ |\ x, :: xs \ \to\ e_2]\!]^\sharp\,\rho \ =\ \mathsf{let}\ b = [\![e_0]\!]^\sharp\,\rho\ \mathsf{in} \\ & b \wedge [\![e_1]\!]^\sharp\,\rho \vee [\![e_2]\!]^\sharp\,(\rho \oplus \{x \mapsto b, xs \mapsto 1\}) \vee [\![e_2]\!]^\sharp\,(\rho \oplus \{x \mapsto 1, xs \mapsto b\}) \\ & [\![\mathsf{match}\ e_0\ \mathsf{with}\ (x_1, x_2) \ \to\ e_1]\!]^\sharp\,\rho \  \  =\ \mathsf{let}\ b = [\![e_0]\!]^\sharp\,\rho\ \mathsf{in} \\ & [\![e_1]\!]^\sharp\,(\rho \oplus \{x_1 \mapsto 1, x_2 \mapsto b\}) \vee [\![e_1]\!]^\sharp\,(\rho \oplus \{x_1 \mapsto b, x_2 \mapsto 1\}) \\ & [\![[]]\!]^\sharp\,\rho \  \  =\ 1 \\ & [\![e_1 :: e_2]\!]^\sharp\,\rho \  \  \  =\ [\![e_1]\!]^\sharp\,\rho \wedge [\![e_2]\!]^\sharp\,\rho \\ & [\![e_1, e_2]\!]^\sharp\,\rho \  \  =\ [\![e_1]\!]^\sharp\,\rho \wedge [\![e_2]\!]^\sharp\,\rho \end{split}
```

863

```
app# = fun x \to fun y \to let \#x' = x and \#y' = y in match 'x with [\ ] \to y' | \ x :: xs \to \ \text{let } \#r = x :: \text{app} \# xs \ y in x \to x
```

Discussion

- Both strictness analyses employ the same complete lattice.
- Results and application, though, are quite different.
- Thereby, we use the following description relations:

Top Strictness : $\bot \triangle 0$ Total Strictness : $z \triangle 0$ if \bot occurs in z.

Both analyses can also be combined to an a joint analysis ...

Discussion

- The rules for constructor applications have changed.
- Also the treatment of **match** now involves the components z and x_1, x_2 .
- Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

Discussion

- The rules for constructor applications have changed.
- Also the treatment of **match** now involves the components z and x_1, x_2 .
- Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

This results in the following fixpoint iteration:

$$\begin{array}{c|c}
0 & \mathbf{fun} \ x \to \mathbf{fun} \ y \to 0 \\
1 & \mathbf{fun} \ x \to \mathbf{fun} \ y \to x \land y \\
2 & \mathbf{fun} \ x \to \mathbf{fun} \ y \to x \land y
\end{array}$$

We deduce that both arguments are definitely totally required if the result is totally required.

Caveat

Whether or not the result is totally required, depends on the context of the function call!

In such a context, a specialized function may be called ...

865

This results in the following fixpoint iteration:

$$\begin{array}{c|c}
0 & \mathbf{fun} \, x \to \mathbf{fun} \, y \to 0 \\
1 & \mathbf{fun} \, x \to \mathbf{fun} \, y \to x \land y \\
2 & \mathbf{fun} \, x \to \mathbf{fun} \, y \to x \land y
\end{array}$$

We deduce that both arguments are definitely totally required if the result is totally required.

Caveat

Whether or not the result is totally required, depends on the context of the function call!

In such a context, a specialized function may be called ...

Discussion

- The rules for constructor applications have changed.
- Also the treatment of **match** now involves the components z and x_1, x_2 .
- Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

864

$$\mathsf{app\#} = \mathsf{fun}\,\, x \,\to\, \mathsf{fun}\,\, y \,\to\, \mathsf{let}\, \#x' = x\, \mathsf{and}\, \#y' = y\, \mathsf{in}$$

$$\mathsf{match}\, \mathsf{with}\, [\,] \,\to\, y'$$

$$|x :: xs \,\to\, \mathsf{let}\, \#\, r = x \,: \mathsf{app\#}\, x \,: y \,$$

Discussion

- Both strictness analyses employ the same complete lattice.
- · Results and application, though, are quite different.
- Thereby, we use the following description relations:

Top Strictness : $\perp \Delta 0$

Total Strictness : $z \triangle 0$ if \bot occurs in z.

Both analyses can also be combined to an a joint analysis ...

This results in the following fixpoint iteration:

$$\begin{vmatrix} \mathbf{0} & \mathbf{fun} \, x \to \mathbf{fun} \, y \to 0 \\ 1 & \mathbf{fun} \, x \to \mathbf{fun} \, y \to x \wedge y \\ 2 & \mathbf{fun} \, x \to \mathbf{fun} \, y \to x \wedge y \end{vmatrix}$$

We deduce that both arguments are definitely totally required if the result is totally required.

Caveat

Whether or not the result is totally required, depends on the context of the function call!

In such a context, a specialized function may be called ...

865

 $\mathsf{app\#} = \mathsf{fun}\,\, x \, \to \, \mathsf{fun}\,\, y \, \to \, \mathsf{let}\,\, \#x' = x\,\, \mathsf{and}\,\, \#y' = y\,\, \mathsf{in}$ $\mathsf{match}\,\, 'x\,\, \mathsf{with}\,\, [\,\,] \quad y' \quad |\,\, x :: xs \, \to \,\, \mathsf{let}\,\, \#\, r = x :: \, \mathsf{app\#}\, xs\,\, y$ $\mathsf{in}\,\, r$

Discussion

- Both strictness analyses employ the same complete lattice.
- Results and application, though, are quite different.
- Thereby, we use the following description relations:

Top Strictness $(: \bot \triangle 0)$

Total Strictness : $z \triangle 0$ if \bot occurs in z.

Both analyses can also be combined to an appoint analysis...

866

Example

For our beloved function app, we obtain:

[app]
$$\sharp d_1 d_2 = (2 \sqsubseteq d_1); d_2 \sqcup (1 \sqsubseteq d_1); (1 \sqcup \llbracket \operatorname{app} \rrbracket^\sharp d_1 d_2 \sqcup d_1 \sqcap \llbracket \operatorname{app} \rrbracket^\sharp 2 d_2)$$

$$= (2 \sqsubseteq d_1); d_2 \sqcup (1 \sqsubseteq d_1); 1 \sqcup (1 \sqsubseteq d_1) \lceil \llbracket \operatorname{app} \rrbracket^\sharp d_1 d_2 \sqcup d_1 \sqcap \llbracket \operatorname{app} \rrbracket^\sharp 2 d_2$$

this results in the fixpoint computation:

 \sim \sim \sim

960

Combined Strictness Analysis

We use the complete lattice: $(\times_{\mathcal{N}}, \times_{\mathcal{T}}) \rightarrow$

= 1

$$\mathbb{T} = \{0 \sqsubset 1 \sqsubset 2\} \qquad \text{ρ $\rightleftarrows $} = \land$$

The description relation is given by:

 $z \triangle 0$ $z \triangle 1$ (z contains \perp) $z \triangle 2$ (z $\sqrt[3]{a}$ lue) $z \triangle 2$

- The lattice is more informative, the functions, though, are no longer as efficiently representable, e.g., through Boolean expressions.
 - We require the auxiliary functions:

$$(i \sqsubseteq x); \ y = \begin{cases} y & \text{if } i \sqsubseteq x \\ 0 & \text{otherwise} \end{cases}$$

867

$$\begin{array}{|c|c|c|c|c|}\hline 0 & \mathbf{fun}\,x \to \mathbf{fun}\,y \to & 0\\ 1 & \mathbf{fun}\,x \to \mathbf{fun}\,y \to & (2\,\sqsubseteq x);\,y \sqcup (1\,\sqsubseteq x);\,\,1\\ 2 & \mathbf{fun}\,x \to \mathbf{fun}\,y \to & (2\,\sqsubseteq x);\,y \sqcup (1\,\sqsubseteq x);\,\,1 \end{array}$$

We conclude

- that both arguments are totally required if the result is totally required; and
- that the root of the first argument is required if the root of the result is required.

Remark

The analysis can be easily generalized such that it guarantees evaluation up to a depth d.

Further Directions

- Our Approach is also applicable to other data structures.
- In principle, also higher-order (monomorphic) functions can be analyzed in this way.
- Then, however, we require higher-order abstract functions of which there are many.
- Such functions therefore are approximated by:

$$\operatorname{fun} x_1 \to \dots \operatorname{fun} x_r \to \top$$

 For some known higher-order functions such as map, foldl, loop, ... only unary or binary functional arguments are required — of which there are sufficiently few.

871

Two p 1 (B > B) > B > R

5 Optimization of Logic Programs

We only consider the mini language PuP ("Pure Prolog"). In particular, we do not consider:

arithmetic;
• the cut-operator.

• Self-modification by means of assert and retract.

Background 6: Binary Decision Diagrams

Idea (1)

- Choose an ordering x_1, \ldots, x_k on the arguments ...
- Represent the function $f: \mathbb{B} \to \ldots \to \mathbb{B}$ by $[f]_0$ where:

$$\begin{array}{rcl} [b]_k & = & b \\ \\ [f]_{i-1} & = & \text{fun } x_i \to & \text{if } x_i \text{ then } [f \ 1]_i \\ \\ & & \text{else } [f \ 0]_i \end{array}$$

Example $f x_1 x_2 x_3 = x_1 \land (x_2 \leftrightarrow x_3)$

... yields the tree:

892

Idea (3)

• Nodes whose test is irrelevant, can also be abandoned ...

894

Idea (2)

- Decision trees are exponentially large ...
- Often, however, many sub-trees are isomorphic!!
- Isomorphic sub-trees need to be represented only once ...

Discussion

• This representation of the Boolean function f is unique!

Equality of functions is efficiently decidable !!

• For the representation to be useful, it should support the basic operations: $\land, \lor, \lnot, \Rightarrow, \exists \, x_j \dots$

$$[b_1 \wedge b_2]_k = b_1 \wedge b_2$$

$$[f \wedge g]_{i-1} = \operatorname{fun} x_i \to \operatorname{if} x_i \operatorname{then} [f \ 1 \wedge g \ 1]_i$$

$$\operatorname{else} [f \ 0 \wedge g \ 0]_i$$
 // analogous for the remaining operators

895

$$\begin{array}{lll} [\exists x_j.\,f]_{i-1} &=& \mathrm{fun}\; x_i \; \to \; \mathrm{if}\; x_i \; \mathrm{then}\; [\exists \,x_j.\,f\, 1]_i \\ && \mathrm{else}\; [\exists \,x_j.\,f\, 0]_i & \mathrm{if}\; i < j \\ \\ [\exists \,x_j.\,f]_{j-1} &=& [f\, 0 \vee f\, 1]_j & \end{array}$$

- · Operations are executed bottom-up.
- Root nodes of already constructed sub-graphs are stored in a unique-table

 \Longrightarrow

Isomorphy can be tested in constant time!

 The operations thus are polynomial in the size of the input BDDs.

806

Example: $(x_1 \leftrightarrow x_2) \land (x_3 \leftrightarrow x_4)$

Discussion

- Originally, BDDs have been developped for circuit verification.
- Today, they are also applied to the verification of software ...
- A system state is encoded by a sequence of bits.
- A BDD then describes the set of all reachable system states.
- Caveat: Repeated application of Boolean operations may increase the size dramatically!
- The variable ordering may have a dramatic impact ...

897

Discussion (2)

• In general, consider the function:

$$(x_1 \leftrightarrow x_2) \land \ldots \land (x_{2n-1} \leftrightarrow x_{2n})$$

W.r.t. the variable ordering:

$$x_1 < x_2 < \ldots < x_{2n}$$

the BDD has 3n internal nodes.

W.r.t. the variable ordering:

$$x_1 < x_3 < \ldots < x_{2n-1} < x_2 < x_4 < \ldots < x_{2n}$$

the RDD has more than 2ⁿ internal nodes !!

A similar result holds for the implementation of Addition through BDDs.

ח	iscussion ((3)
\boldsymbol{L}	1300331011	v,

• Not all Boolean functions have small BDDs ...

Difficult functions:

□ multiplication;

□ indirect addressing ...

→ data-intensive programs cannot be analyzed in this way!

Discussion (3)

• Not all Boolean functions have small BDDs ...

• Difficult functions:

□ multiplication;

□ indirect addressing ...

data-intensive programs cannot be analyzed in this way!

900

900