Script generated by TTT

Title:

Date:

Seidl: Programmoptimierung (03.02.2016)

Wed Feb 03 10:21:20 CET 2016

Duration: 81:49 min

Pages: 41

letzi=erine]'p = [e]! (p@ {21 [ed]f p})
(Tea]? p) A ([(p @ {21 = 1}))

[let #21 =e1ine]f p

System of Equations

[[fi]libl bk:[[ciﬂ: {’Ijl }bj |j:1,,k‘}, 1:1,...,n,b1,...,bkCIB§

The unkowns of the system of equations are the functions
[£:]* or the individual entries [f;]* ... bk in the value table.

All right-hand sides are monotonic!
Consequently, there is a least solution.
The complete lattice B — ... — B has height O(2F).

855

Example

from = funn — n:from (n+1)
take = funk — funs — if kK <0 then []
else match s with[] — []

| z:ixs — zitake (B—1) s

847

Extension: Data Structures

Functions may vary in the parts which they require from a
data structure ...

hd = funl! — matchlwithz::zs — =z

e hd only accesses the first element of a list.
e length only accesses the backbone of its argument.

e rev forces the evaluation of the complete argument — given
that the result is required completely ...

859

Extension: Data Structures Extension of the Syntax

We additionally consider expression of the form:

]

[
| (e1.e2) | match ey with (zy,z5) — e

Functions may vary in the parts which they require from a
data structure ... e = ... |

€1l €E2

match eo with [| — e | z22s — e

hd = fun! — match!withz::zs — =z

' . Top Strictness
e hd only accesses the first element of a list. P

e length only accesses the backbone of its argument. » We assume that the program is well-typed.
e rev forces the evaluation of the complete argument — given o We are only interested in top constructors.
that the result is required completely ... ¢ Again, we model this property with (monotonic) Boolean
functions.

e Forint-values, this coincides with strictness.
e Weextend [e]f p withrules for case-distinction ...

859 860

Idea (cont.) Extension of the Syntax

e We determine the abstract semantics of all functions. We additionally consider expression of the form:

s Forthat, we put up a system of equations ... e u= ... | []]leiea| matchey with[] — e | zuxs — e
Auxiliary Function | (e1,e2) | match eg with (z1,22) — e

[e]* : (Vars = B) = B .

[» _ Top Strictness

[z]F o = prx e We assume that the program is well-typed.

[Oie]fp = [e]fp o We are only interested in top constructors.

[er O o] p = [ef pAfea]f p e Again, we model this property with (monotonic) Boolean

[if o thene, else ex]* p = [eo]f p A ([er]* p V [e2] p) functions.

[fer... efp = I qelf o) ... (exlf p) ¢ For int-values, this coincides with strictness.

e Weextend [e]f p with rules for case-distinction ...

854 860

[match eg with [] — e1 | zuzs — efp =
[ealt oA ([esl oV [ealf (0 & (2,5 > 11)
[match g with (z,73) — et p _
[eo]* p A [ea]? (p ® {z1, 25— 1})
[P p = [erze]tp = [(er,ex)] p =1

e The rules for match are analogous to those for if.

e Incase of ::, we know nothing about the values beneath the
constructor; therefore {z, zs — 1}.

e We check our analysis on the function app ...

861

Total Strictness

Assume that the result of the function application is totally required.
Which arguments then are also totally required ?

We again refer to Boolean functions ...

[match ey with [] — e; | 2,228 — e]' p = let b= [eg]* pin
bATelf pv et (p @ {z = byas = 1}) Ve (p D {z — 1,25~ b})

[match eg with (z1,72) — ei]f p = let b= [eg]* pin
[el]? (p @ {w1 = 1,20 = b} V [e1]* (p @ {1 = b, 22— 1})
[» =1

levseal [o A [ed]f
[(ex,)l p = [alf pAleltp

863

Example

app = funz — funy — match z with[] — y

| zuzs — = appzsy

Abstract interpretation yields the system of equations:

[[app]]” b1 bg = bl A (bg A\ 1)
= b

We conclude that we may conclude for sure only for the first
argument that its top constructor is required.

862

Total Strictness

Assume that the result of the function application is totally required.
Which arguments then are also totally required ?

We again refer to Boolean functions ...

[match ey with [] — e; | z,:28 — e]f p = let b= [ey]® pin
bA[e P pViel (p@ {z v bxs = 1}) Ve (p @ {z— 1,z b})

[match eg with (z1,22) — ei]f p = let b= [eo]? pin
led]f (p @ {z1 0= 1,za 5 b}) V [ea]* (p @ {1+ b, 20 > 1})

I » —

fer:zea]? o = [alPpnle]'p

[(er, e2)l* o = lealt pAlealf p

863

I/

Eu\a/\/t/%”t N R R ¢

=/ €T =4
oV 1 4T - @

Discussion

e The rules for constructor applications have changed.

e Also the treatment of match now involves the components z
and r1,Ta.

e Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

[app]* b1 b2 = by A bz V by A [app]* 1 by V%ﬂapp]]ﬂ by by
= by AbyV by A Japp]* 1 by V [app]F by by

864

Total Strictness

Assume that the result of the function application is totally required.
Which arguments then are also totally required ?

We again refer to Boolean functions ...

[match e with [| — e; | z,nas — e]fp = let b= [eg)* pin
baledf pV e (p @ {x s byas = 1}V [ex]* (p B {x +— 1,28 b})

[match ey with (z1,72) — el]f p = let b= [eg]? pin
led]f (p @ {z1 = 1,22 b}) V [er]* (p @ {m1 v b, 22 = 1})

[0 -~

ler = ea]* p = [al* o Aled* p

[(er, e2)]* p = [el*pAled*p

863

app# = funz — funy — let #2' =z and #y' =y in

match 'z with [| — ¢/

| zixs — let #r=x:app# zsy

inr
Discussion

« Both strictness analyses employ the same complete lattice.
¢ Results and application, though, are quite different.
¢ Thereby, we use the following description relations:
Top Strictness 1L AQ
Total Strictness z A0if L occursin z.
e Both analyses can also be combined to an a joint analysis ...

866

Discussion L:)/‘fl\ lo 2 %

« The rules for constructor applications have changed.

e Also the treatment of match now involves the components z
and r1,T2.

e Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

Happ}]u bl b? = bl Ab2Vb1 A [[aﬁ

Discussion

e The rules for constructor applications have changed.

e Also the treatment of match now involves the components z
and r1,Ta.

e Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

[app]* b1 b2 = by Abz v by A [app)* 1 ba V 1 A [app]f by b2

= bl A b2 A bl M [[app}]n 1 bg \"% [[app]}n bl b2

a \Vg éq /\b?’ﬂ‘r

864

This results in the following fixpoint iteration:

0| funz — funy — 0

1| funz — funy -z Ay

2| funz — funy >z Ay

We deduce that both arguments are definitely totally required if the
result is totally required.

Caveat
Whether or not the result is totally required, depends on the

context of the function call!

In such a context, a specialized function may be called ...

865

This results in the following fixpoint iteration:

0| funz — funy — 0

1| funz — funy -z Ay

2| funz —» funy >z Ay

We deduce that both arguments are definitely totally required if the
result is totally required.

Caveat
Whether or not the result is totally required, depends on the

context of the function call!

In such a context, a specialized function may be called ...

865

Discussion This results in the following fixpoint iteration:

« The rules for constructor applications have changed. 0| funr — funy — 0
e Also the treatment of match now involves the components =z L|ffunz — funy — x Ay
and zy, zs. 2| funz = funy -z Ay

¢ Again, we check the approach for the function app. We deduce that both arguments are definitely totally required if the

result is totally required.
Example

. o . Caveat
Abstract interpretation yields the system of equations:

Whether or not the result is totally required, depends on the

[app] by ba = by A by V by A Japp]? 1 b2V 1 A [app]! by b2 context of the function call!
= by Aby Vb A app]* 1 by V [app] by ba In such a context, a specialized function may be called ...
864 865

app# = funz — funy — 1et#$’:a:'and#y’:yin U/-L'\M/CA% \A/V\ (>(¢/l /\KHL>—_>) ><'4 ?
oy =1
=0V it

Discussion

e Both strictness analyses employ the same complete lattice.

e Results and application, though, are quite different. <~ A
e Thereby, we use the following description relations:

Top Strictness : 1L AD

Total Strictness : z A0if L occursin z.

¢ Both analyses can also be combined to an a joint analysis ...

866

app# = funz — funy — let#a'=zand#y' =y

- h 'z with || 719

4 i I | Aizs — let #F =
7y 2y L

inr
Discussion

e Both strictness analyses employ the same complete
. Hesult%nd’}alp Ilicatioq(. thougly, are quite d?@r‘ent.

s Thereby, we us?the following d@scription relations:
Top StrictnessJ ; LAD

Total Strictnes z A 0if L oceursin z.

i

i’ app(;b xsy

lattice

0

 Both analyses CT-EISO be combined to an a@}int an ysis@

866

Example

For our_beloved function app, we :
(102 %& d

[[app}]ﬂ dl dg = (2Ed1) dg

1Cdy); (LU [app] dy dz L1 dy 1 [app]?
. i2[d1)'dgu
1Ed1) 1u
(/' jcdl)[[app]* 41 da L /1
M [applF 2 ds

this results in the fixpo'int computation:

i O

869

2 dy)

ombln d Strlctness a‘tﬁi&s
(>(/| A XS

e We use the complete lattice:

= /

¢ The description relation is given by:

T={0Cc1C2}

€T =4

A0 zA1(zcontains 1) =z A 28:TalueT™ (&
=0V 1 X

e« The lattice is more informative, the functions, though, are no
< /\ longer as efficiently representable, e.g., through Boolean
expressions.

¢ We require the auxiliary functions:

‘ y ifiCax
(iCax);y= .
0 otherwise

867

0| funz — funy — 0

1| funz — funy - (2Cz);yU(1Cx); 1

2| funz — funy - (2Cz);y U (1Cx); 1

We conclude

e that both arguments are totally required if the result is totally
required; and

o that the root of the first argument is required if the root of the
result is required.

Remark

The analysis can be easily generalized such that it guarantees
evaluation up to adepth d.

870

Further Directions

e Our Approach is also applicable to other data structures.

¢ In principle, also higher-order (monomarphic) functions can
be analyzed in this way.

e Then, however, we require higher-order abstract functions —
of which there are many.

e Such functions therefore are approximated by:

funz; — ... funz, — T

s For some known higher-order functions such as map, foldl,
loop, ... only unary or binary functional arguments are
required — of which there are sufficiently few.

871

T p 2 (B2 R 13
5 Optlmlzatlowm\P_r)ograrln’i)

We only consider the mini Ia uage PuP (“Pure Pr%
particular, we do not con d

TIATTR T (hogsm Sy

¢ Self-modification by means o . —) WB

872

Background 6: Binary Decision Diagrams

Idea (1)

e Choose an ordering 1, ..., z; on the arguments ...
e Represent the function f:B—...>B by [flo where:

By = b
[flici = funz; — if @; then [f 1;

else [f 0]; t)/

0
Example fx) 2923 = 21 A (12 ¢ x3) @

891

... yields the tree:

892

Idea (3)

« Nodes whose test is irrelevant, can also be abandoned ...

894

Idea (2)

« Decision trees are exponentially large ...
¢ Often, however, many sub-trees are isomorphic !!

e Isomorphic sub-trees need to be represented only once ...

Discussion

e This representation of the Boolean function f is unique !

—
—

Equality of functions is efficiently decidable !!

« For the representation to be useful, it should support the basic
operations: A, V,—, =, 3z; ...

[y Abai = biAbe
[fAglica = funaz; — if x; then [f1Agl];
else [f0 A g0];

!/

// analogous for the remaining operators

895

[Bz;. flisa = funa; — if x; then [Jz;. f1); Discussion

else [3z;. f0]; ifi<y
Bz;. flin = [fOV f1;

Originally, BDDs have been developped for circuit verification.

Today, they are also applied to the verification of software ...

A system state is encoded by a sequence of bits.

e Operations are executed bottom-up. A BDD then describes the set of all reachable system states.

o Root nodes of already constructed sub-graphs are stored in a e Caveat: Repeated application of Boolean operations may
unique-table increase the size dramatically !

—
_—

The variable ordering may have a dramatic impact ...
Isomorphy can be tested in constant time !

e The operations thus are polynomial in the size of the input
BDDs.

896 897

Example: (71 € 22) A (23 > 74) Discussion (2)

e In general, consider the function: [

T
((1’1 — I‘z) AL A (Ign_l — I‘Qn)

W.r.t. the variable ordering:

I <Ta <...< Ty

the BDD has 3n internal nodes.
W.r.t. the variable ordering:

T <T3<...<Togp-1 < Ty <ITy<...<Tgy

has mare than 2" _internal-nedes-ll

A similar result holds for the implementation of Addition through
BDDs.

898 899

Discussion (3) Discussion (3)

« Not all Boolean functions have small BDDs ... ¢ Not all Boolean functions have small BDDs ...
o Difficult functions: ¢ Difficult functions:
0 multiplication; 0 multiplication;
O indirect addressing ... O indirect addressing ...
—— data-intensive programs cannot be analyzed in this way ! —— data-intensive programs cannot be analyzed in this way !

800 900

