Script generated by TTT

Title: seidl: Theoretische_Informatik (24.05.2012)

Date: Thu May 24 16:01:37 CEST 2012

Duration: 91:49 min

Pages: 60

Satz 3.44

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$.

Satz 3.44

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Satz 3.44

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$. Wir eliminieren zuerst alle ϵ -Produktionen aus G (wie in Lemma 3.26).

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$. Wir eliminieren zuerst alle ϵ -Produktionen aus G (wie in Lemma 3.26).

Dann berechnen wir induktiv die Menge R aller von S ableitbaren Wörter $\in (V \cup \Sigma)^*$,

Satz 3.44

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$. Wir eliminieren zuerst alle ϵ -Produktionen aus G (wie in Lemma 3.26).

Dann berechnen wir induktiv die Menge R aller von S ableitbaren Wörter $\in (V \cup \Sigma)^*$, die nicht länger als w sind:

• $S \in R$

Satz 3.44

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$. Wir eliminieren zuerst alle ϵ -Produktionen aus G (wie in Lemma 3.26).

Dann berechnen wir induktiv die Menge R aller von S ableitbaren Wörter $\in (V \cup \Sigma)^*$, die nicht länger als w sind:

- $S \in R$
- Wenn $\alpha B \gamma \in R$ und $(B \to \beta) \in P$ und $|\alpha \beta \gamma| \le |w|$, dann auch $\alpha \beta \gamma \in R$.

Satz 3.44

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$. Wir eliminieren zuerst alle ϵ -Produktionen aus G (wie in Lemma 3.26).

Dann berechnen wir induktiv die Menge R aller von S ableitbaren Wörter $\in (V \cup \Sigma)^*$, die nicht länger als w sind:

- $S \in R$
- Wenn $\alpha B \gamma \in R$ und $(B \to \beta) \in P$ und $|\alpha \beta \gamma| \le |w|$, dann auch $\alpha \beta \gamma \in R$.

Man zeigt:

$$w \in L_V(G) \quad \Leftrightarrow \quad w \in R$$

wobei $L_V(G) := \{ w \in (V \cup \Sigma)^* \mid S \to_G^* w \}.$

Das Wortproblem ($w \in L(G)$?) ist für eine CFG G entscheidbar.

Beweis:

OE sei $w \neq \epsilon$. Wir eliminieren zuerst alle ϵ -Produktionen aus G (wie in Lemma 3.26).

Dann berechnen wir induktiv die Menge R aller von S ableitbaren Wörter $\in (V \cup \Sigma)^*$, die nicht länger als w sind:

- $S \in R$
- Wenn $\alpha B \gamma \in R$ und $(B \to \beta) \in P$ und $|\alpha \beta \gamma| \le |w|$, dann auch $\alpha \beta \gamma \in R$.

Man zeigt:

$$w \in L_V(G) \Leftrightarrow w \in R$$

wobei $L_V(G) := \{ w \in (V \cup \Sigma)^* \mid S \to_G^* w \}.$ Da R endlich ist $(|R| \leq |V \cup \Sigma|^{|w|})$, ist $w \in R$ entscheidbar, und damit auch $w \in L_V(G)$, und damit auch $w \in L(G)$.

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\dots a_n\in \Sigma^*.$

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\dots a_n\in \Sigma^*.$

Definition 3.45

$$V_{ij} := \{ A \in V \mid A \to_G^* a_i \dots a_j \}$$

3.7 Der Cocke-Younger-Kasami-Algorithmus

Der CYK-Algorithmus entscheidet das Wortproblem für kontextfreie Grammatiken in Chomsky-Normalform.

Eingabe: Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform, $w=a_1\dots a_n\in \Sigma^*.$

Definition 3.45

$$V_{ij} := \{ A \in V \mid A \rightarrow_G^* a_i \dots a_j \}$$
 für $i \leq j$

Damit gilt:

$$w \in L(G) \quad \Leftrightarrow \quad S \in V_{1n}$$

Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$V_{ii} = \{A \in V \mid (A \to a_i) \in P\}$$

$$V_{ij} = \left\{A \in V \mid \exists i \le k < j, B \in V_{ik}, C \in V_{k+1,j}. \atop (A \to BC) \in P\right\}$$
 für $i < j$

Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$V_{ii} = \{ A \in V \mid (A \to a_i) \in P \}$$

Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$\begin{array}{rcl} V_{ii} & = & \{A \in V \mid (A \rightarrow a_i) \in P\} \\ \\ V_{ij} & = & \left\{A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ \\ (A \rightarrow BC) \in P \end{array}\right\} \quad \text{für } i < j \end{array}$$

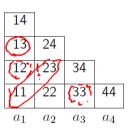
Korrektheitsbeweis: Induktion nach j - i.

Der CYK-Algorithmus berechnet die V_{ij} rekursiv nach wachsendem j-i:

$$\begin{array}{rcl} V_{ii} & = & \{A \in V \mid (A \rightarrow a_i) \in P\} \\ \\ V_{ij} & = & \left\{A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ \\ (A \rightarrow BC) \in P \end{array}\right\} \quad \text{für } i < j \end{array}$$

Korrektheitsbeweis: Induktion nach j-i.

Die V_{ij} als Tabelle (mit ij statt V_{ij}):



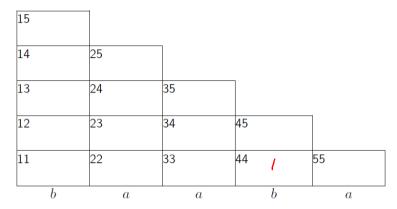
Beispiel 3.46

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$



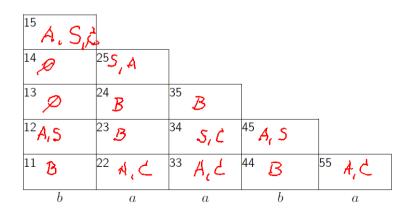
Beispiel 3.46

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$



Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{cc} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

- j i < n Werte für k betrachtet,
- für jedes k wird für alle Produktionen $A \to BC$ untersucht, ob $B \in V_{ik}$ und $C \in V_{k+1,j}$,

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

- j i < n Werte für k betrachtet,
- für jedes k wird für alle Produktionen $A \to BC$ untersucht, ob $B \in V_{ik}$ und $C \in V_{k+1,j}$, wobei $|V_{ik}|, |V_{k+1,j}| \le |V|$.

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{c} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

- j i < n Werte für k betrachtet,
- für jedes k wird für alle Produktionen $A \to BC$ untersucht, ob $B \in V_{ik}$ und $C \in V_{k+1,j}$, wobei $|V_{ik}|, |V_{k+1,j}| \le |V|$.

Gesamtzeit: $O(n^3)$

Satz 3.47

Der CYK-Algorithmus entscheidet das Wortproblem $w \in L(G)$ für eine fixe CFG G in Chomsky-Normalform in Zeit $O(|w|^3)$.

Beweis:

Sei n:=|w|. Es werden $\frac{n(n-1)}{2}\in O(n^2)$ Mengen V_{ij} berechnet.

$$V_{ij} = \left\{ A \in V \mid \begin{array}{cc} \exists i \leq k < j, \ B \in V_{ik}, \ C \in V_{k+1,j}. \\ (A \to BC) \in P \end{array} \right\} \quad (i < j)$$

Für jede dieser Mengen werden

- j i < n Werte für k betrachtet,
- für jedes k wird für alle Produktionen $A \to BC$ untersucht, ob $B \in V_{ik}$ und $C \in V_{k+1,j}$, wobei $|V_{ik}|, |V_{k+1,j}| \le |V|$.

Gesamtzeit: $O(n^3)$

Denn |P| und |V| sind Konstanten unabhängig von n. [Konstruktion jeder Menge V_{ii} : O(1). Für alle V_{ii} also O(n).]

Erweiterung

Der CYK-Algorithmus kann so erweitert werden, dass er nicht nur das Wortproblem entscheidet, sondern auch die Menge der Syntaxbäume für die Eingabe berechnet.

Erweiterung

Der CYK-Algorithmus kann so erweitert werden, dass er nicht nur das Wortproblem entscheidet, sondern auch die Menge der Syntaxbäume für die Eingabe berechnet.

Realisierung:

• V_{ij} ist die Menge der Syntaxbäume mit Rand $a_i \dots a_j$.

Erweiterung

Der CYK-Algorithmus kann so erweitert werden, dass er nicht nur das Wortproblem entscheidet, sondern auch die Menge der Syntaxbäume für die Eingabe berechnet.

Realisierung:

- V_{ij} ist die Menge der Syntaxbäume mit Rand $a_i \dots a_j$.
- ullet Statt A enthält V_{ij} einen Syntaxbaum, dessen Wurzel mit A beschriftet ist.

Erweiterung

Der CYK-Algorithmus kann so erweitert werden, dass er nicht nur das Wortproblem entscheidet, sondern auch die Menge der Syntaxbäume für die Eingabe berechnet.

Realisierung:

- V_{ij} ist die Menge der Syntaxbäume mit Rand $a_i \dots a_j$.
- Statt A enthält V_{ij} einen Syntaxbaum, dessen Wurzel mit A beschriftet ist.

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz: $L(G_1) = L(G_2)$?

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz: $L(G_1) = L(G_2)$?

• Schnittproblem: $L(G_1) \cap L(G_2) = \emptyset$?

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

• Äquivalenz: $L(G_1) = L(G_2)$?

• Schnittproblem: $L(G_1) \cap L(G_2) = \emptyset$?

ullet Regularität: L(G) regulär?

Vorschau

Für CFGs sind folgende Probleme nicht entscheidbar:

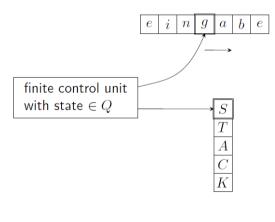
• Äquivalenz: $L(G_1) = L(G_2)$?

• Schnittproblem: $L(G_1) \cap L(G_2) = \emptyset$?

ullet Regularität: L(G) regulär?

ullet Mehrdeutigkeit: Ist G mehrdeutig?

3.8 Kellerautomaten



Anwendungsgebiete von Kellerautomaten:

• Syntaxanalyse von Programmiersprachen

Anwendungsgebiete von Kellerautomaten:

- Syntaxanalyse von Programmiersprachen
- Analyse von Programmen mit Rekursion

Definition 3.48 (PDA)

Ein (nichtdeterministischer) Kellerautomat ((N)PDA = (Nondeterministic) Pushdown Automaton) besteht aus:

 ${\it Q}\,$ endliche Zustandsmenge

Definition 3.48 (PDA)

Ein (nichtdeterministischer) Kellerautomat ((N)PDA = (Nondeterministic) Pushdown Automaton) besteht aus:

- Q endliche Zustandsmenge
- Σ endliches Eingabealphabet
- Γ endliches Kelleralphabet

Definition 3.48 (PDA)

Ein (nichtdeterministischer) Kellerautomat ((N)PDA = (Nondeterministic) Pushdown Automaton) besteht aus:

Q endliche Zustandsmenge

 Σ endliches Eingabealphabet

 Γ endliches Kelleralphabet

 $q_0 \in Q$ Anfangszustand

 $Z_0 \in \Gamma$ Anfangskellerinhalt

Definition 3.48 (PDA)

Ein (nichtdeterministischer) Kellerautomat ((N)PDA = (Nondeterministic) Pushdown Automaton) besteht aus:

Q endliche Zustandsmenge

 Σ endliches Eingabealphabet

 Γ endliches Kelleralphabet

 $q_0 \in Q$ Anfangszustand

 $Z_0 \in \Gamma$ Anfangskellerinhalt

 $\begin{array}{l} \delta \ \, \ddot{\mathsf{U}}\mathsf{bergangsfunktion} \,\, Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*) \\ \mathsf{wobei} \,\, |\delta(q,b,Z)| < \infty \,\, \mathsf{f\"{u}r} \,\, q \in Q, b \in \Sigma \cup \{\epsilon\}, Z \in \Gamma. \end{array}$

Definition 3.48 (PDA)

Ein (nichtdeterministischer) Kellerautomat ((N)PDA = (Nondeterministic) Pushdown Automaton) besteht aus:

Q endliche Zustandsmenge

 Σ endliches Eingabealphabet

 Γ endliches Kelleralphabet

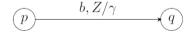
 $q_0 \in Q$ Anfangszustand

 $Z_0 \in \Gamma$ Anfangskellerinhalt

 $\begin{array}{l} \delta \ \ \text{ \"{U}bergangsfunktion} \ Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*) \\ \text{wobei} \ |\delta(q,b,Z)| < \infty \ \text{f\"{u}r} \ q \in Q, b \in \Sigma \cup \{\epsilon\}, Z \in \Gamma. \end{array}$

 $F\subseteq Q$ akzeptierende Zustände oder Endzustände

Eine graphische Notation für $\delta(p,b,Z) \ni (q,\gamma)$:



Achtung: Kein endlicher Automat!

Die schrittweise Verarbeitung der Eingabe wird als Relation \rightarrow zwischen Konfigurationen (= Gesamtzuständen) des Systems beschrieben:

Definition 3.49

Eine Konfiguration eines PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,\delta,F)$ ist ein Tripel (q,w,γ) mit

$$\begin{aligned} q &\in Q & & \text{(Zustand),} \\ w &\in \Sigma^* & & \text{((Rest)Eingabe),} \\ \gamma &\in \Gamma^* & & \text{(Keller).} \end{aligned}$$

Die schrittweise Verarbeitung der Eingabe wird als Relation \rightarrow zwischen Konfigurationen (= Gesamtzuständen) des Systems beschrieben:

Definition 3.49

Eine Konfiguration eines PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,\delta,F)$ ist ein Tripel (q,w,γ) mit

$$\begin{aligned} q &\in Q & & \text{(Zustand)}, \\ w &\in \Sigma^* & & \text{((Rest)Eingabe)}, \\ \gamma &\in \Gamma^* & & \text{(Keller)}. \end{aligned}$$

Die Ersetzungsrelation \to_M ergibt sich wie folgt aus δ : Falls $\delta(q, b, Z) \ni (q', \gamma')$ (wobei $b \in \Sigma \cup \{\epsilon\}$) dann

Die schrittweise Verarbeitung der Eingabe wird als Relation \rightarrow zwischen Konfigurationen (= Gesamtzuständen) des Systems beschrieben:

Definition 3.49

Eine Konfiguration eines PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,\delta,F)$ ist ein Tripel (q,w,γ) mit

$$\begin{aligned} &q \in Q & & \text{(Zustand),} \\ &w \in \Sigma^* & & \text{((Rest)Eingabe),} \\ &\gamma \in \Gamma^* & & \text{(Keller).} \end{aligned}$$

Die Ersetzungsrelation \to_M ergibt sich wie folgt aus δ : Falls $\delta(q, b, Z) \ni (q', \gamma')$ (wobei $b \in \Sigma \cup \{\epsilon\}$) dann

$$(q, bw, Z\gamma) \to_M (q',$$

Die schrittweise Verarbeitung der Eingabe wird als Relation \to zwischen Konfigurationen (= Gesamtzuständen) des Systems beschrieben:

Definition 3.49

Eine Konfiguration eines PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,\delta,F)$ ist ein Tripel (q,w,γ) mit

$$\begin{aligned} q &\in Q & & \text{(Zustand),} \\ w &\in \Sigma^* & & \text{((Rest)Eingabe),} \\ \gamma &\in \Gamma^* & & \text{(Keller).} \end{aligned}$$

Die Ersetzungsrelation \to_M ergibt sich wie folgt aus δ : Falls $\delta(q, b, Z) \ni (q', \gamma')$ (wobei $b \in \Sigma \cup \{\epsilon\}$) dann

$$(q, bw, Z\gamma) \to_M (q', w,$$

Die schrittweise Verarbeitung der Eingabe wird als Relation \rightarrow zwischen Konfigurationen (= Gesamtzuständen) des Systems beschrieben:

Definition 3.49

Eine Konfiguration eines PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,\delta,F)$ ist ein Tripel (q,w,γ) mit

$$q \in Q$$
 (Zustand),

$$w \in \Sigma^*$$
 ((Rest)Eingabe),

$$\gamma \in \Gamma^*$$
 (Keller).

Die Ersetzungsrelation \to_M ergibt sich wie folgt aus δ :

Falls $\delta(q, b, Z) \ni (q', \gamma')$ (wobei $b \in \Sigma \cup \{\epsilon\}$) dann

$$(q, bw, Z\gamma) \to_M (q', w, \gamma'\gamma)$$

Die schrittweise Verarbeitung der Eingabe wird als Relation \rightarrow zwischen Konfigurationen (= Gesamtzuständen) des Systems beschrieben:

Definition 3.49

Eine Konfiguration eines PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,\delta,F)$ ist ein Tripel (q,w,γ) mit

$$q \in Q$$
 (Zustand),

$$w \in \Sigma^*$$
 ((Rest)Eingabe),

$$\gamma \in \Gamma^*$$
 (Keller).

Die Ersetzungsrelation \to_M ergibt sich wie folgt aus δ :

Falls
$$\delta(q, b, Z) \ni (q', \gamma')$$
 (wobei $b \in \Sigma \cup \{\epsilon\}$) dann

$$(q, bw, Z\gamma) \to_M (q', w, \gamma'\gamma)$$

Achtung:
$$b = \epsilon$$
 und $\gamma' = \epsilon$ und $|\gamma'| > 1$ möglich!

Definition 3.50

Ein PDA M akzeptiert $w \in \Sigma^*$ gdw

$$(q_0, w, Z_0) \to_M^* (f, \epsilon, \gamma)$$

für ein $f \in F$, $\gamma \in \Gamma^*$.

Beispiel 3.51

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA

$$M = (\{p, q, r\}, \{0, 1\}, \{0, 1, Z_0\}, p,$$

Beispiel 3.51

Die Sprache
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$
 wird vom PDA
$$M = (\{p,q,r\}, \, \{0,1\}, \, \{0,1,Z_0\}, \, p, \, Z_0,$$

Beispiel 3.51

Die Sprache
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$
 wird vom PDA
$$M = (\{p,q,r\},\,\{0,1\},\,\{0,1,Z_0\},\,p,\,Z_0,\,\delta,$$

Beispiel 3.51

Die Sprache
$$L=\{ww^R\mid w\in\{0,1\}^*\}$$
 wird vom PDA
$$M=(\{p,q,r\},\,\{0,1\},\,\{0,1,Z_0\},\,p,\,Z_0,\,\delta,\,\{r\})$$

Beispiel 3.51

Die Sprache
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$
 wird vom PDA
$$M = (\{p,q,r\},\ \{0,1\},\ \{0,1,Z_0\},\ p,\ Z_0,\ \delta,\ \{r\})$$

$$\delta(p,a,Z) = \{(p,aZ)\} \quad \text{für } a \in \{0,1\},\ Z \in \{0,1,Z_0\}$$

Beispiel 3.51

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA $M = (\{p,q,r\}, \, \{0,1\}, \, \{0,1,Z_0\}, \, p, \, Z_0, \, \delta, \, \{r\})$ $\delta(p,a,Z) = \{(p,aZ)\} \quad \text{für } a \in \{0,1\}, \, Z \in \{0,1,Z_0\}$ $\delta(p,\epsilon,Z) = \{(q,Z)\} \quad \text{für } Z \in \{0,1,Z_0\}$

Beispiel 3.51

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA $M = (\{p,q,r\}, \, \{0,1\}, \, \{0,1,Z_0\}, \, p, \, Z_0, \, \delta, \, \{r\})$ $\delta(p,a,Z) = \{(p,aZ)\} \quad \text{für } a \in \{0,1\}, \, Z \in \{0,1,Z_0\}$ $\delta(p,\epsilon,Z) = \{(q,Z)\} \quad \text{für } Z \in \{0,1,Z_0\}$ $\delta(q,a,a) = \{(q,\epsilon)\} \quad \text{für } a \in \{0,1\}$ $\delta(q,\epsilon,Z_0) = \{(r,\epsilon)\}$

Beispiel 3.51

Die Sprache $L = \{ww^R \mid w \in \{0,1\}^*\}$ wird vom PDA $M = (\{p,q,r\}, \, \{0,1\}, \, \{0,1,Z_0\}, \, p, \, Z_0, \, \delta, \, \{r\})$ $\delta(p,a,Z) = \{(p,aZ)\} \quad \text{für } a \in \{0,1\}, \, Z \in \{0,1,Z_0\}$ $\delta(p,\epsilon,Z) = \{(q,Z)\} \quad \text{für } Z \in \{0,1,Z_0\}$ $\delta(q,a,a) = \{(q,\epsilon)\} \quad \text{für } a \in \{0,1\}$ $\delta(q,\epsilon,Z_0) = \{(r,\epsilon)\}$ akzeptiert.

Hauptresultate:

- Kellerautomaten akzeptieren genau die kontextfreien Spachen.
- Nichtdeterministische Kellerautomaten (PDAs) sind mächtiger als deterministische Kellerautomaten (DPDAs).

3.9 Tabellarischer Überblick

Abschlusseigenschaften

Schnitt	Vereinigung	Komplement	Produkt	Stern