Script generated by TTT

Title: seidl: Theoretische_Informatik (12.07.2012)

Date: Thu Jul 12 16:04:05 CEST 2012

Duration: 85:44 min

Pages: 73

RUCKSACK

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$ und $b \in \mathbb{N}$.

Problem: Gibt es $R \subseteq \{1, \ldots, n\}$ mit $\sum_{i \in R} a_i = b$?

Satz 5.33

RUCKSACK ist NP-vollständig.

Beweis:

 $3KNF-SAT \leq_p RUCKSACK$:

Sei $F = (z_{11} \lor z_{12} \lor z_{13}) \land \cdots \land (z_{m1} \lor z_{m2} \lor z_{m3})$, wobei

$$z_{ij} \in \{x_1, \dots, x_n\} \cup \{\neg x_1, \neg x_2, \dots, \neg x_n\}$$

D.h. $m=\mbox{Anzahl}$ der Klauseln und n Anzahl der vorkommenden Variablen.

Wir geben jetzt Zahlen $\vec{a} = a_1, \dots, a_k$ und b an. b ist (etwa im Dezimalsystem)

$$b = \underbrace{44 \dots 444}_{m} \underbrace{11 \dots 11}_{n}$$

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

Lösung: Die Zahlen 7, 9, 7, 15

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

Lösung: Die Zahlen 7, 9, 7, 15, dh $R = \{2, 4, 5, 7\}$

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

Lösung: Die Zahlen 7, 9, 7, 15, dh $R = \{2, 4, 5, 7\}$

RUCKSACK → PARTITION:

$$M := \sum_{i=1}^{n} a_i = 57,$$

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

Lösung: Die Zahlen 7, 9, 7, 15, dh $R = \{2, 4, 5, 7\}$

RUCKSACK → PARTITION:

$$M := \sum_{i=1}^{n} a_i = 57$$
, $M - b + 1 = 20$, $b + 1 = 39$

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

Lösung: Die Zahlen 7, 9, 7, 15, dh $R = \{2, 4, 5, 7\}$

RUCKSACK \rightarrow PARTITION:

 $M := \sum_{i=1}^{n} a_i = 57$, M - b + 1 = 20, b + 1 = 39

Das resultierende PARTITONS-Problem: 12, 7, 4, 9, 7, 3, 15, 20, 39

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

Lösung: Die Zahlen 7, 9, 7, 15, dh $R = \{2, 4, 5, 7\}$

 $RUCKSACK \rightarrow PARTITION$:

 $M := \sum_{i=1}^{n} a_i = 57$, M - b + 1 = 20, b + 1 = 39

Das resultierende PARTITONS-Problem: 12, 7, 4, 9, 7, 3, 15, 20, 39

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und b = 38.

Lösung: Die Zahlen 7, 9, 7, 15, dh $R = \{2, 4, 5, 7\}$

RUCKSACK → PARTITION:

$$M := \sum_{i=1}^{n} a_i = 57, \quad M - b = 20, \quad b = 39$$

Das resultierende PARTITONS-Problem: 12, 7, 4, 9, 7, 3, 15, 20, 39

Lösung: $\{7, 9, 7, 15, 20\}$ und $\{12, 4, 3, 39\}$,

PARTITION

Gegeben: Zahlen $a_1, \ldots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

Satz 5.34

PARTITION ist NP-vollständig.

Beweis: RUCKSACK \leq_p PARTITION

Beispiel: $\vec{a} = 12, 7, 4, 9, 7, 3, 15$ und $\vec{b} = 38$.

Lösung: Die Zahlen 7, 9, 7, 15, dh $R = \{2, 4, 5, 7\}$

RUCKSACK → PARTITION:

$$M := \sum_{i=1}^{n} a_i = 57$$
, $M - b + 1 = 20$, $b + 1 = 39$

Das resultierende PARTITONS-Problem: 12, 7, 4, 9, 7, 3, 15, 20, 39

Lösung: $\{7, 9, 7, 15, 20\}$ und $\{12, 4, 3, 39\}$, dh $I = \{2, 4, 5, 7, 8\}$.

Reduktion im Allgemeinen:

$$a_1, a_2, \dots, a_k, b \mapsto a_1, a_2, \dots, a_k, M - b + 1, b + 1$$

BIN PACKING

Gegeben: Eine "Behältergröße" $b \in \mathbb{N}$, die Anzahl der Behälter $k \in \mathbb{N}$ und "Objekte" $a_1, a_2, \dots a_n$.

BIN PACKING

Gegeben: Eine "Behältergröße" $b \in \mathbb{N}$, die Anzahl der Behälter

 $k \in \mathbb{N}$ und "Objekte" $a_1, a_2, \dots a_n$.

Problem: Können die Objekte so auf die k Behälter verteilt

werden, dass kein Behälter überläuft?

BIN PACKING

Gegeben: Eine "Behältergröße" $b \in \mathbb{N}$, die Anzahl der Behälter

 $k \in \mathbb{N}$ und "Objekte" $a_1, a_2, \dots a_n$.

Problem: Können die Objekte so auf die k Behälter verteilt

werden, dass kein Behälter überläuft?

Satz 5.35

BIN PACKING ist NP-vollständig.

BIN PACKING

Gegeben: Eine "Behältergröße" $b \in \mathbb{N}$, die Anzahl der Behälter

 $k \in \mathbb{N}$ und "Objekte" $a_1, a_2, \dots a_n$.

Problem: Können die Objekte so auf die k Behälter verteilt

werden, dass kein Behälter überläuft?

Satz 5.35

BIN PACKING ist NP-vollständig.

Beweis: PARTITION \leq_p BIN PACKING

BIN PACKING

Gegeben: Eine "Behältergröße" $b \in \mathbb{N}$, die Anzahl der Behälter

 $k \in \mathbb{N}$ und "Objekte" $a_1, a_2, \dots a_n$.

Problem: Können die Objekte so auf die k Behälter verteilt

werden, dass kein Behälter überläuft?

Satz 5.35

BIN PACKING ist NP-vollständig.

Beweis: PARTITION \leq_p BIN PACKING

$$(a_1,\ldots,a_n) \mapsto (b,k,2a_1,\ldots,2a_n)$$

wobei $b := \sum_{i=1}^k a_i$ und k := 2.

HAMILTON

П

Gegeben: Ungerichteter Graph G

Problem: Enthält G einen Hamilton-Kreis, dh einen geschlossenen

Pfad, der jeden Knoten genau einmal enthält?

HAMILTON

Gegeben: Ungerichteter Graph G

Problem: Enthält G einen Hamilton-Kreis, dh einen geschlossenen

Pfad, der jeden Knoten genau einmal enthält?

Satz 5.36

HAMILTON ist NP-vollständig.

HAMILTON

 ${\sf Gegeben:}\ {\sf Ungerichteter}\ {\sf Graph}\ G$

Problem: Enthält G einen Hamilton-Kreis, dh einen geschlossenen

Pfad, der jeden Knoten genau einmal enthält?

Satz 5.36

HAMILTON ist NP-vollständig.

3 KNF-SAT Sp HAM

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen" und eine Zahl $k \in \mathbb{N}$

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

Problem: Gibt es eine "Rundreise" (Hamilton-Kreis) der Länge

 $\leq k$?

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

Problem: Gibt es eine "Rundreise" (Hamilton-Kreis) der Länge

 $\leq k$?

Satz 5.37

TSP ist NP-vollständig.

Beweis: HAMILTON \leq_p TSP

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

Problem: Gibt es eine "Rundreise" (Hamilton-Kreis) der Länge

 $\leq k$?

Satz 5.37

TSP ist NP-vollständig.

Beweis: HAMILTON \leq_p TSP

 $(\{1,\ldots,n\},E) \mapsto (M,n)$

wobei

 $M_{ij} := \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ 2 & \text{sonst} \end{cases}$

TRAVELLING SALESMAN (TSP)

Gegeben: Eine $n \times n$ Matrix $M_{ij} \in \mathbb{N}$ von "Entfernungen"

und eine Zahl $k \in \mathbb{N}$

Problem: Gibt es eine "Rundreise" (Hamilton-Kreis) der Länge

 $\leq k$?

Satz 5.37

TSP ist NP-vollständig.

Beweis: HAMILTON \leq_p TSP

 $(\{1,\ldots,n\},E) \mapsto (M,n)$

wobei

 $M_{ij} := \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ 2 & \text{sonst} \end{cases}$

FÄRBBARKEIT (COL)

Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k.

Problem: Gibt es eine Färbung der Knoten V mit k Farben,

so dass keine zwei benachbarten Knoten die gleiche

Farbe haben?

FÄRBBARKEIT (COL) FÄRBBARKEIT (COL) Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k. Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k. Problem: Gibt es eine Färbung der Knoten V mit k Farben, Problem: Gibt es eine Färbung der Knoten V mit k Farben. so dass keine zwei benachbarten Knoten die gleiche so dass keine zwei benachbarten Knoten die gleiche Farbe haben? Farbe haben? Satz 5.38 Satz 5.38 FÄRBBARKEIT ist NP-vollständig für $k \geq 3$. FÄRBBARKEIT ist NP-vollständig für $k \geq 3$. Beweis: $3KNF-SAT \leq_p 3FÄRBBARKEIT$

FÄRBBARKEIT (COL) FÄRBBARKEIT (COL) Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k. Gegeben: Ein ungerichteter Graph (V, E) und eine Zahl k. Problem: Gibt es eine Färbung der Knoten V mit k Farben, Problem: Gibt es eine Färbung der Knoten V mit k Farben, so dass keine zwei benachbarten Knoten die gleiche so dass keine zwei benachbarten Knoten die gleiche Farbe haben? Farbe haben? Satz 5.38 Satz 5.38 FÄRBBARKEIT ist NP-vollständig für $k \geq 3$. FÄRBBARKEIT ist NP-vollständig für $k \geq 3$. Beweis: Beweis: $3KNF-SAT \leq_p 3FÄRBBARKEIT$ 3KNF-SAT $≤_p$ 3FÄRBBARKEIT Satz 5.39 Satz 5.39 *2FÄRBBARKEIT* ∈ *P* 2FÄRBBARKEIT ∈ P

Satz 5.39

2FÄRBBARKEIT ∈ P

Die NP-Bibel, der NP-Klassiker:

Michael Garey and David Johnson.

Computers and Intractability: A Guide to the Theory of NP-Completeness. 1979.

Die NP-Bibel, der NP-Klassiker:

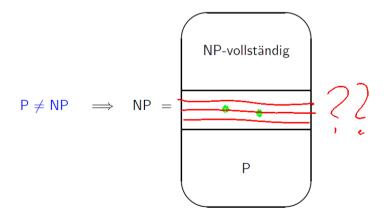
Michael Garey and David Johnson.

Computers and Intractability: A Guide to the Theory of NP-Completeness. 1979.

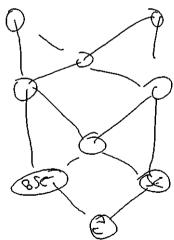
Despite the 23 years that have passed since its publication, I consider Garey and Johnson the single most important book on my office bookshelf.

Lance Fortnow, 2002.

Man weiß nicht ob P = NP. Aber man weiß (Ladner 1975)



Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik, 1931.



Kurt Gödel.

Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik, 1931.

Kurt Gödel 1906 (Brünn) -1978 (Princeton)

5.5 Die Unvollständigkeit der Arithmetik

5.5 Die Unvollständigkeit der Arithmetik

Syntax der Arithmetik:

Variablen: V $x y z \dots$ Zahlen: N $0\ 1\ 2\ \dots$

5.5 Die Unvollständigkeit der Arithmetik

Syntax der Arithmetik:

Variablen: V $x y z \dots$

Zahlen: N $0\ 1\ 2\ \dots$

V N (T+T) (T*T)Terme: T

5.5 Die Unvollständigkeit der Arithmetik

Syntax der Arithmetik:

Variablen: V $x y z \dots$

Zahlen: N $0 \ 1 \ 2 \ \dots$

V N (T+T) (T*T)Terme: T

 $(T = T) \neg F (F \wedge F) (F \vee F)$ Formeln: F

 $\exists V. F$

5.5 Die Unvollständigkeit der Arithmetik

Syntax der Arithmetik:

Variablen: V $x y z \dots$

 $0\ 1\ 2\ \dots$ Zahlen: N

Terme: T V N (T+T) (T*T) \bigwedge Formeln: F $(T=T) \neg F (F \land F) (F \lor F)$

 $\exists V. F$

 $\exists x. 0 = x^2 + x + 17$ Palze

5.5 Die Unvollständigkeit der Arithmetik

Syntax der Arithmetik:

Variablen: V $x y z \dots$

 $0\ 1\ 2\ \dots$ Zahlen: N

Terme: TV N (T+T) (T*T)

Formeln: F $(T = T) \neg F (F \wedge F) (F \vee F)$

 $\exists V. F$

Wir betrachten $\forall x. F$ als Abk. für $\neg \exists x. \neg F$.

5.5 Die Unvollständigkeit der Arithmetik

Syntax der Arithmetik:

Variablen: $V = x y z \dots$

Zahlen: N $0\ 1\ 2\ \dots$

Terme: T V N (T + T) (T * T)

Formeln: F $(T = T) \neg F (F \wedge F) (F \vee F)$ $(\exists V.F)$

Wir betrachten $\forall x. F$ als Abk. für $\neg \exists x. \neg F$.

Definition 5.40

Ein Vorkommen einer Variablen x in einer Formel F ist gebunden gdw das Vorkommen in einer Teilformel der Form $\exists x. F'$ oder $\forall x. F'$ in der Teilformel F' liegt.

 $3 \times . \times = 5 \wedge \times = 7$

5.5 Die Unvollständigkeit der Arithmetik

Syntax der Arithmetik:

Zahlen: $N = 0 \ 1 \ 2 \dots$

Terme: T V N (T + T) (T * T)

Formeln: F $(T = T) \neg F (F \land F) (F \lor F)$

 $\exists V. F$

Wir betrachten $\forall x. F$ als Abk. für $\neg \exists x. \neg F$.

Definition 5.40

Ein Vorkommen einer Variablen x in einer Formel F ist gebunden gdw das Vorkommen in einer Teilformel der Form $\exists x. F'$ oder $\forall x. F'$ in der Teilformel F' liegt.

Ein Vorkommen ist frei gdw es nicht gebunden ist.

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der höchstens x_1, \ldots, x_k frei vorkommen.

Sind n_1,\ldots,n_k $\mathbb N$ so ist $F(n_1,\ldots,n_k)$ das Ergebnis der Substitution von n_1,\ldots,n_k für die freien Vorkommen von x_1,\ldots,x_k .

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der

höchstens x_1, \ldots, x_k frei vorkommen.

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der höchstens x_1, \ldots, x_k frei vorkommen.

Sind n_1, \ldots, n_k $\mathbb N$ so ist $F(n_1, \ldots, n_k)$ das Ergebnis der Substitution von n_1, \ldots, n_k für die freien Vorkommen von x_1, \ldots, x_k .

Beispiel 5.41

$$F(x,y) = (x = y \land \exists x. x = y)$$

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der höchstens x_1, \ldots, x_k frei vorkommen.

Sind n_1, \ldots, n_k $\mathbb N$ so ist $F(n_1, \ldots, n_k)$ das Ergebnis der Substitution von n_1, \ldots, n_k für die freien Vorkommen von x_1, \ldots, x_k .

Beispiel 5.41

$$F(x,y) = (x = y \land \exists x. x = y)$$

 $F(5,7) = (5 = 7 \land \exists x. x = 7)$

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der höchstens x_1, \ldots, x_k frei vorkommen.

Sind n_1, \ldots, n_k $\mathbb N$ so ist $F(n_1, \ldots, n_k)$ das Ergebnis der Substitution von n_1, \ldots, n_k für die freien Vorkommen von x_1, \ldots, x_k .

Beispiel 5.41

$$F(x,y) = (x = y \land \exists x. x = y)$$

 $F(5,7) = (5 = 7 \land \exists x. x = 7)$

Ein Satz ist eine Formel ohne freie Variablen.

Beispiel 5.42

$$\exists x. \ \exists y. \ x = y$$
 $\exists y. \ \exists x. \ x = y$

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der höchstens x_1, \ldots, x_k frei vorkommen.

Sind n_1,\ldots,n_k $\mathbb N$ so ist $F(n_1,\ldots,n_k)$ das Ergebnis der Substitution von n_1,\ldots,n_k für die freien Vorkommen von x_1,\ldots,x_k .

Beispiel 5.41

$$F(x,y) = (x = y \land \exists x. x = y)$$

 $F(5,7) = (5 = 7 \land \exists x. x = 7)$

Fin Satz ist eine Formel ohne freie Variablen.

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der höchstens x_1, \ldots, x_k frei vorkommen.

Sind n_1, \ldots, n_k $\mathbb N$ so ist $F(n_1, \ldots, n_k)$ das Ergebnis der Substitution von n_1, \ldots, n_k für die freien Vorkommen von x_1, \ldots, x_k .

Beispiel 5.41

$$F(x,y) = (x = y \land \exists x. x = y)$$

 $F(5,7) = (5 = 7 \land \exists x. x = 7)$

Ein Satz ist eine Formel ohne freie Variablen.

Beispiel 5.42

$$\exists x. \ \exists y. \ x = y$$
 $\exists y. \ \exists x. \ x = y$

 $\operatorname{Mit} S$ bezeichnen wir die Menge der arithmetischen Sätze.

Notation: $F(x_1, \ldots, x_k)$ bezeichnet eine Formel F, in der höchstens x_1, \ldots, x_k frei vorkommen.

Sind n_1,\ldots,n_k $\mathbb N$ so ist $F(n_1,\ldots,n_k)$ das Ergebnis der Substitution von n_1,\ldots,n_k für die freien Vorkommen von x_1,\ldots,x_k .

Beispiel 5.41

$$F(x,y) = (x = y \land \exists x. x = y)$$

 $F(5,7) = (5 = 7 \land \exists x. x = 7)$

Ein Satz ist eine Formel ohne freie Variablen.

Beispiel 5.42

$$\exists x. \ \exists y. \ x = y$$
 $\exists y. \ \exists x. \ x = y$

Mit S bezeichnen wir die Menge der arithmetischen Sätze.

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

$$(t_1=t_2) \ W \quad {
m gdw} \quad t_1 \ {
m und} \ t_2 \ {
m den} \ {
m selben} \ {
m Wert} \ {
m haben}.$$
 $eg F \ W \quad {
m gdw} \quad F \ W$

Die Menge der wahren Sätze der Arithmetik nennen wir W: Definition 5.43

 $(t_1 = t_2) W$ gdw t_1 und t_2 den selben Wert haben.

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

 $(t_1=t_2) \; W \quad {
m gdw} \quad t_1 \; {
m und} \; t_2 \; {
m den} \; {
m selben} \; {
m Wert} \; {
m haben}.$ $eg F \; W \qquad {
m gdw} \quad F \; W$

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

$$(t_1=t_2) \; W \quad {
m gdw} \quad t_1 \; {
m und} \; t_2 \; {
m den} \; {
m selben} \; {
m Wert} \; {
m haben}.$$
 $eg F \; W \quad {
m gdw} \quad F \; W$

$$(F \wedge G) W \quad \mathsf{gdw} \quad F \ W \ \mathsf{und} \ G \ W$$

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

 $(t_1 = t_2) \ W$ gdw t_1 und t_2 den selben Wert haben.

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

$$(t_1=t_2) \; W \quad {
m gdw} \quad t_1 \; {
m und} \; t_2 \; {
m den} \; {
m selben} \; {
m Wert} \; {
m haben}.$$

$$\neg F W \text{ gdw } F \not S \not F \bigvee$$

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

$$(t_1 = t_2) \ W$$
 gdw t_1 und t_2 den selben Wert haben.

$$\neg F W \quad \mathsf{gdw} \quad F \mathsf{W}$$

$$(F \wedge G) \ W \quad \text{gdw} \quad F \ W \ \text{und} \ G \ W$$

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

```
 (t_1 = t_2) \ W \qquad \text{gdw} \qquad t_1 \text{ und } t_2 \text{ den selben Wert haben}.   \neg F \ W \qquad \text{gdw} \qquad F \ W   (F \land G) \ W \qquad \text{gdw} \qquad F \ W \text{ und } G \ W   (F \lor G) \ W \qquad \text{gdw} \qquad F \ W \text{ oder } G \ W   \exists x. F(x) \qquad \text{gdw} \qquad \text{es } n \ \mathbb{N} \text{ gibt, so dass } F(n) \ W
```

Fakt 5.44

Für jeden Satz F gilt entweder F W oder $\neg F$ W

Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

Fakt 5.44

Für jeden Satz F gilt entweder F W oder $\neg F$ W

NB Ob eine Formel mit freien Variablen wahr ist, kann vom Wert der freien Variablen abhängen:

Die Menge der wahren Sätze der Arithmetik nennen wir ${\cal W}$:

Definition 5.43

$$(t_1=t_2)\ W$$
 gdw t_1 und t_2 den selben Wert haben.
 $\neg F\ W$ gdw $F\ W$ $(F\wedge G)\ W$ gdw $F\ W$ und $G\ W$ $(F\vee G)\ W$ gdw $F\ W$ oder $G\ W$ $\exists x.\ F(x)$ gdw es $n\ \mathbb{N}$ gibt, so dass $F(n)\ W$

Fakt 5.44

Für jeden Satz F gilt entweder F W oder $\neg F$ W

NB Ob eine Formel mit freien Variablen wahr ist, kann vom Wert der freien Variablen abhängen:

$$\exists x.\, x+x=y$$

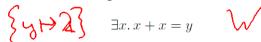
Die Menge der wahren Sätze der Arithmetik nennen wir W:

Definition 5.43

Fakt 5.44

Für jeden Satz F gilt entweder F W oder $\neg F$ W

NB Ob eine Formel mit freien Variablen wahr ist, kann vom Wert der freien Variablen abhängen:



$$\exists x. \, x + x = y$$

Daher haben wir Wahrheit nur für Sätze definiert.

Definition 5.45

Eine partielle Funktion $f: \mathbb{N}^k \mathbb{N}$ ist arithmetisch repräsentierbar gdw es eine Formel $F(x_1, \ldots, x_k, y)$ gibt, so dass für alle n_1,\ldots,n_k,m N gilt:

$$f(n_1,\ldots,n_k)=m$$
 gdw $F(n_1,\ldots,n_k,m)$ W

Satz 5.46

Jede WHILE-berechenbare Funktion ist arithmetisch repräsentierbar.

Definition 5.45

Eine partielle Funktion $f: \mathbb{N}^k \mathbb{N}$ ist arithmetisch repräsentierbar gdw es eine Formel $F(x_1, \ldots, x_k, y)$ gibt, so dass für alle $n_1, \ldots, n_k, m \mathbb{N}$ gilt:

$$f(n_1,\ldots,n_k)=m$$
 gdw $F(n_1,\ldots,n_k,m)$ W

Definition 5.45

Eine partielle Funktion $f: \mathbb{N}^k \mathbb{N}$ ist arithmetisch repräsentierbar gdw es eine Formel $F(x_1, \ldots, x_k, y)$ gibt, so dass für alle $n_1, \ldots, n_k, m \mathbb{N}$ gilt:

$$f(n_1,\ldots,n_k)=m$$
 gdw $F(n_1,\ldots,n_k,m)$ W

Satz 5.46

Jede WHILE-berechenbare Funktion ist arithmetisch repräsentierbar.

Satz 5.47

W ist nicht entscheidbar.

Korollar 5.48

W ist nicht semi-entscheidbar.

Wir kodieren Beweise als Zahlen.

Definition 5.49

Ein Beweissystem für die Arithmetik ist ein entscheidbares Prädikat

$$Bew: \mathbb{N} \times S \rightarrow \{0, 1\}$$

wobei wir Bew(b,F) lesen als "b ist Beweis für Formel F". Ein Beweissystem Bew ist korrekt gdw

$$Bew(b,F) \implies F W.$$

Ein Beweissystem Bew ist vollständig gdw

$$F W \implies \text{ es gibt } b \text{ mit } Bew(b, F).$$

Satz 5.47

W ist nicht entscheidbar.

Korollar 5.48

W ist nicht semi-entscheidbar.

Wir kodieren Beweise als Zahlen.

Definition 5.49

Ein Beweissystem für die Arithmetik ist ein entscheidbares Prädikat

$$Bew: \mathbb{N} \times S \rightarrow \{0,1\}$$

wobei wir Bew(b,F) lesen als "b ist Beweis für Formel F ". Ein Beweissystem Bew ist korrekt gdw

$$Bew(b, F) \implies F W$$
.

Ein Beweissystem Bew ist vollständig gdw

$$F W \implies \text{ es gibt } b \text{ mit } Bew(b, F).$$

Satz 5.50 (Gödel)

Es gibt kein korrektes und vollständiges Beweissystem für die Arithmetik.

Beweis:

Denn mit jedem korrekten und vollständigen Beweissystem kann man $\chi_W'(F)$ programmieren:

$$b:=0$$
 while $Bew(b,F)=0$ do $b:=b+1$ output(1)

Satz 5.50 (Gödel)

Es gibt kein korrektes und vollständiges Beweissystem für die Arithmetik.

Beweis:

Denn mit jedem korrekten und vollständigen Beweissystem kann man $\chi_W'(F)$ programmieren:

$$\begin{array}{l} b:=0\\ \textbf{while}\ Bew(b,F)=0\ \textbf{do}\ b:=b+1\\ \text{output(1)} \end{array}$$