Script generated by TTT

Title:
Date:
Duration:

Pages:

Seidl: Virtual_machines (15.05.2012)

Tue May 15 14:01:15 CEST 2012

91:09 min

45

codeg g4 p

codeg (e1 =e2) p

codeg e p

loadc q q constant
codeg ez p
coder e p

store

coder e p

load otherwise

63

Example: int a[l0], =b; withp = {a++7,b+s 17},
For the statement: %1 = 5; we obtain:
coder, (xa) p = codegap = codepap = loadc?
code (xa=5;)p = loadc5
loadc 7
store
pop
As an exercise translate:
si=b=(&a)+2; and s =x(b+3) =5
64
b

pt

Dereferencing of Pointers:

The application of the operator * to the expression e returns the contents of
the storage cell, whose address is the R-value of ¢:
Be p={i—=1j—2,pt = 3,a— 0b— 7} Then code; (#€) p = codeg e p

codey ((pf = b)y—=a)i+l]p

Exam ple: Given the declarations
= codeg ((pt = b) —a)p = codeg ((pt—b)—a)p struct £ { int a[7]; struct £ +b;
codeg (i+1)p loada 1 inti, j;
loadc 1 loadc 1 struct t #pt;
mul add and the expression ((pt — b) — a)[i +1]
add loadc 1
Because of e —a = (%e).a holds:
mul
add
coder (e wa)p = codegep
loadc (pa)
add
59 57

For arrays, their R-value equals their L-value. Therefore:

Be p={i—1,j— 2,pt = 3,a— 0,b— 7} Then:

codep ((pt —b) +a)p = codeg (pt = b)p = | loada3
coder ((pt = b) —a)[i+1]p teadc 0
= codeg p = codeg ((pt =b) —a)p add
codc;; 0 loada 1

loadc 1 loadc 1 loadc O
mul add add
add loadc 1 In total, we obtain the instruction sequence:
mul loada 3 load loada 1 loadc 1
add
loadc 7 loadc 0 loadc 1 mul
add add add add

For arrays, their R-value equals their L-value. Therefore:

Be p={i—=1j—2,pt = 3,a— 0b— 7} Then

codeg ((pt = b) —a)p = codeg (pt—=b)p = loada3
codep ((pt = b) = a)[i+1] p loadc 0 loadc 7
= codeg ((pt = b) —a)p = | _codep ((pt—b)—a)p add add
codeg (i+1)p loada 1 load
loadc 1 loadc 1 loadc 0
mul add add
add loadc 1 In total, we obtain the instruction sequence:
1
mu loada 3 load loada 1 loadc 1
add
loadc 7 loadc 0 loadc 1 mul
add add add add
59 60
7 Conclusion coder (*€) p — codegep
We tabulate the cases of the translation of expressions:
coder x p = loadc (px)
coder, (e1]ea]) p = codeg e p
coder. (erez]) FORER AL codeg (&e) p = coderLep
codeg ez p
loadc |t .
codeg e p = coderLep if ¢ is an array
mul
add if ey has type t+ or t
c 1hastyp | codeg (e0ey) p = codegeq p
codeg ez p
coder (e.a) p = codepep

op op instruction for operator ‘0"
loadc (pa)

add

61 62

coder, (xe) p = codegep

codeg g p = loadcq q constant
coder, x p = loadc (px)
codeg (e1=e2)p = coderezp
coder (&e) p = codepep coder ey p
store
codeg e p = codepep if ¢ is an array
codeg e p = coderep
codeg (e;0ey) p = codegey p load otherwise
codeg ea p
op op instruction for operator ‘0’
62 63
Example: int a[l0], =b; withp = {a7,b s 17}.
For the statement: *a=>5; we obtain:
/ifO\ code (s1s2) p = loadc? loadc 5
loadc 2 loadc 17
coder, (xa) p = coderap = coderap = loadc? loadc 10 // size of int[10] load
code (xa=5;)p = loadch mul N scaling loadc 3
loadc 7 add loadc 1 // sizeof int
store loadc 17 mul [/ scaling
pop store add
pop A endof s1 store
pop [/ endof s

As an exercise translate:

s1=b=(&a)+2; and sp = x(b+3)

5;

[~

code (s152) p =

loadc 7

loadc 2

loadc 10 // size of int[10]
mul / scaling

add

loadc 5
loadc 17
load
loadc 3

loadc 1 // size of int

code (s152) p

loadc 7
loadc 2
loadc 10
mul
add

K size of int[10]

/ scaling

loadc 5

loadc 17

load

loadc 3

loadc 1 v/

size of int

loadc 17 mul / scaling loadc 17 mul [/ scaling
store add store add
pop // endof s store pop // endof s store
pop /1 endof s pop /f end of s
65 65
k-/k.A' G{ lO S UD} 3)
Example: with p={ar7,b 17}
For the statement: *1=>5; we obtain:
code (s1s2) p = loadc? loadc 5
loadc 2 loadc 17
coder, (xa) p = coderap = coderap = loadc? loadc 10 // size of int[10] load
code (xa=5;)p = loadch mul N scaling loadc 3
loadc 7 add loadc 1y // size of inté-
store loadc 17 mul [/ scaling
pop store add
pop A endof s1 store
pop [/ endof s

As an exercise translate:

s1=b=(&a)+2; and s, =x(b+3)=5;

Example: int a[l0], =b; withp = {a7,b+ 17},

For the statement: #a =5; we obtain:
code (s1s2) p = loadc? loadc 5
loadc 2 loadc 17
coder, (xa) p = codegap = codepap = loadc?7 loadc10 // size of int[10] load
code (x\a=5;)p = loadc5 mul W scaling loadc 3
loadc 7 add loadc 1 // size of int
store loadc 17 mul [/ scaling
pop store add
pop // endof s store
pop /f end of s
As an exercise translate: @'
si=b=(&a)+2; and sy =x(b+3)=5;
64 65
Example: int a[l0], =b; withp = {a7,b s 17}. Example: int a[l0], xb; withp={a—7,b— 17}
For the statement: *1=>5; we obtain: For the statement: *1 = 5; we obtain:
coder, (*a) p = codegap = codepap = loadc7 coder, (*a) p = codegap = coderap = loadc7
code (k.a=5;)p = loadc5 code (#a=5;)p = loadc5
loadc 7 loadc 7
store store
pop pop
As an exercise translate: As an exercise translate:
s1=b=(&a)+2; and s =x%(b+3)=05; s1=b=(&a)+2; and s2=x(b+3)=5;

Example: int a[l0], =b; withp = {a++7,b+s 17},

For the statement: %1 = 5; we obtain:
code (s152) p = loadc? loadc 5
loadc 2 loadc 17
loadc 10 // size of int[10] load coder, (xa) p = codegap = codepap = loadc?
mul /| scaling loadc 3 code (xa=5;)p = loadc5
add loadc 1y // sizeof int(l loadc 7
loadc 17 mul // scaling store
store add % pop
pop // endof s store
pop /1 endof s
As an exercise translate:
si=b=(&a)+2; and s =x(b+3) =5
65 64
. . 2 3 ‘(q : g
8 Freeing Occupied Storage Potential Solutions:
. Trust the programmer. Manage freed storage in a particular data structure
Problems: (free list) — malloc or free my become expensive.
o The freed storage area is still referenced by other pointers (dangling . Do nothing, ie.: é
references). code free(e); p = codeg e p
o After several deallocations, the storage could look like this (fragmentation): pop
| | | ‘ ‘ | | ‘ — simple and (in general) efficient.
. Use an automatic, potentially “conservative” Garbage-Collection, which
? * % * occasionally collects certainly inaccessible heap space.

66 67

Potential Solutions:

Trust the programmer. Manage freed storage in a particular data structure
(free list) —

malloc or free my become expensive.
Do nothing, ie.:
code free(e); p = codeg e p
pop
e simple and (in general) efficient.

Use an automatic, potentially “conservative” Garbage-Collection, which
occasionally collects certainly inaccessible heap space.

4 (£

The definition of a function consists of

9 Functions

e aname, by which it can be called,
o aspecification of the formal parameters;
e mavybe a result type;
* astatement part, the body.
For C holds:
codeg fp = loadc_f = starting address of the code for f

= Function names must also be managed in the address environment!

68

Example:

int fac (int x) ,Lmﬁ)

intn;

if(x<0)r turn
n = fac(2) + fac(1);
else retur 1) e 1
printf (“%d”, n);
!
At any time during the execution, several instances of one function may exist,
i.e., may have started, but not finished execution.

An instance is created by a call to the function.

The recursion tree in the example:

};fi_n tf

69

We conclude:

The formal parameters and local variables of the different instances of the same
function must be kept separate.

Idea:

Allocate a special storage area for each instance of a function.

In sequential programming languages these storage areas can be managed on a
stack. They are therefore called Stack Frames.

f(K"*)%‘) ke)

9.1 Storage Organization for Functions

sp ML

_—
% local variables
A
formal parameters
FP ———» PCold]
organisational
F cells
=
return value
X’I
X1

FP = Frame Pointer; points to the last organizational cell and is used to address
the formal parameters and the local variables.

The caller must be able to continue execution in its frame after the return from a
function. Therefore, at a function call the following values have to be saved into
organizational cells:

e the FP
e the continuation address after the call and

o the actual EP.
Simplification: The return value fits into one storage cell.

Translation tasks for functions:
* Generate code for the body!

e Generate code for calls!

9.1 Storage Organization for Functions

7 7
o — L

local variables

formal parameters

FP ———| PCold
FPold
EPold

organisational
cells

return value

FI” = Frame Pointer; points to the last organizational cell and is used to address
the formal parameters and the local variables.

The caller must be able to continue execution in its frame after the return from a
function. Therefore, at a function call the following values have to be saved into
organizational cells:

e the FP
e the continuation address after the call and

o the actual EP.
Simplification: The return value fits into one storage cell.

Translation tasks for functions:
o Generate code for the body!

e Generate code for calls!

9.2 Computing the Address Environment

We have to distinguish two different kinds of variables:
1. globals, which are defined externally to the functions;
2. locals/automatic (including formal parameters), which are defined
internally to the functions.

The address environment p associates pairs (tag,a) € {G, L} x Ny with their
names.
Note:

o There exist more refined notions of visibility of (the defining occurrences of)

variables, namely nested blocks.

o The translation of different program parts in general uses different address
environments!

9.2 Computing the Address Environment

We have to distinguish two different kinds of variables:
1. globals, which are defined externally to the functions;
2. locals/automatic (including formal parameters), which are defined
internally to the functions.

The address environment p associates pairs ~ (fag,a) € {G,L} x Ny with their
names.
Note:

o There exist more refined notions of visibility of (the defining occurrences of)

variables, namely nested blocks.

o The translation of different program parts in general uses different address
environments!

Example (1):

main () {
o o],
&

struct li scanf ("%d", &i);
in scanlist (&I);
struct list «f next;| printf ("\n\t%d\n", ith (7));

}

= address environment at @

(struct list % x, int i) { po i e (G,1)

if (i < 1) return x —info; I (G,2)
(G, _ith)

—
—
} é_/ main — (G, _main)
x|

else return ith (x —next, i —1); ith

74

Example (2):

main () {
intk;
@ inti; scanf ("%d", &i);
struct list { scanlist (&I);
int info; printf ("\n\t%d\n", ith (1,i));

struct list * next; |

b# 1
inside of ith:
intith (struct list # x, int i) { L o= (L2
if (7 < 1) return x —+info; * - (L,1)
else return ith (x —next, i — 1); ! - (G.2)
ith +— (G, _ith)

75

Example (3):

inti;
struct list |
int info;

struct list % next;

main () {

intk;

scanf ("%d", &i);

scanlist (&I);

printf ("\n\t%d\n", ith (11));

}

9.3 Calling/Entering and Leaving Functions

Be f the actual function, the Caller, and let f call the function g, the Callee.

b+l
inside of main: The code for a function call has to be distributed among the Caller and the
; Callee:
int ith (struct list * x, int i) { ! - (G.1)
if (i < 1) return ¥ —sinfo; I = (G2 The distribution depends on who has which information.
else return ith (x —next, 1 —1); k — (L.1)
| ith — (G, _ith)
main — (G, _main)
76 77
Altogether we generate for a call:
Actions upon calling/entering ¢: I
1. Saving FP, EP } mark
codeg gle,...,ey) p = mark
2. Computing the actual parameters
codeg €1 p
3. Determining the start address of g available in f
4. Setting the new FP?
- codeg ey, p

5. Saving PC and call

. he beginn ; codegr g p

ump to the beginning o

jump g gorg call
6. Setting the new EP } enter))

available in g where n = space for the actual parameters
7. Allocating the local variables } alloc
)) Note:
Actions upon leaving ¢:
1. Restoring the registers FP, T, SP * Expressions occurring as actual parameters will Pe evaluated to their
return R-value ——= Call-by-Value-parameter passing.

2. Returning to the code of f, ie. restoring the

PC

78

» Function g can also be an expression, whose R-value is the start address of

the function to be called ...

Actions upon calling/entering g¢:

1. Saving FP’, EP

2. Computing the actual parameters
3. Determining the start address of g
4. Setting the new FI’

5. Saving PC and

jump to the beginning of g
6. Setting the new EP
7. Allocating the local variables

Actions upon leaving g
1. Restoring the registers FP’, EP, SP

2. Returning to the code of f, i.e. restoring the
PC

78

} mark

call

} enter
} alloc

return

Altogether we generate for a call:

coder gler,...,en) p = mark
codeg e1 p
available in f
codeg ey p

coder g p

calln

available in g where n = space for the actual parameters

Note:

* Expressions occurring as actual parameters will be evaluated to their
R-value ——= Call-by-Value-parameter passing.

o Function g can also be an expression, whose R-value is the start address of
the function to be called ...

79

