Script generated by TTT

18 Over- and Undersupply of Arguments
Title: Seidl: Virtual_Machines (19.06.2012)

Date: Tue Jun 19 14:01:39 CEST 2012

The first instruction to be executed when entering a function body, i.e., after an
apply is targk.

Duration: 80:10 min This instruction checks whether there are enough arguments to evaluate the
body.
Pages- 57 Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP - FP

141

The instruction mkvec0 takes all references from the stack above FP and
stores them into a vector:

targ k isa complex instruction.] Y
-
8

We decompose its execution in the case of under-supply into several steps:

\!
mkvecO - -
targk = if (SP-FP <k){ g e =
mkvecO; creating the argumentvector) = ——
[e e et P ——s
wrap; // wrapping into an F —object
popenv; // popping the stack frame
} J— J—
N . . L . C =5P=FD; h = new (V, g);
The combination of these steps into one instruction is a kind of optimization :-) SP = FP+1;

for (i=0; i<g; i++)
h—v[i] = S[SP +i];
S[SP] = h;

142 143

Case: Done

or [& J—
ve [/ pC

N % popenv

FP ——=|17 = FP

152

——(1 - [

Iy g VAN o e AR

Case: Over-supply

[FL] [FI]

Py slide k apply

FP==m] | FP

153

o The stack frame can be released after the execution of the body if exactly the

right number of arguments was available.

o If there is an oversupply of arguments, the body must evaluate to a function,

which consumes the rest of the arguments ...

o The check for this is done by return k:

[

returnk = if (SP—-FP=k+1)

popenv; /{ Done

else { // There are more arguments
slide k;
apply; /{ another application

}

The execution of return k results in:

151

19 let-rec-Expressions

A J

Consider the expression e =letrecy; =¢ejand...andy, =¢, ineg

=~ =
The translation of ¢ must deliver an instruction sequence that
 allocates local variables y1, ..., yu;

e in the case of
CBV: evaluates ey, ..., e, and binds the y; to their values;
CBN: constructs closures for the ey, .. ., e; and binds the y; to them;

» evaluates the expression ¢y and returns its value.

Warning:

In a letrec-expression, the definitions can use variables that will be allocated
only later! ——= Dummy-values are put onto the stack before processing the
definition.

154

For CBN, we obtain:

codey epsd = allocn // allocates local variables

codec ey p’ (sd +n)

The instruction allocn reserves n cells on the stack and initialises them with
n dummy nodes:

rewrite n
Cl-1]|-1
allocn Cl-11-1
n
codec e, o' (sd +n) Cl-1[-1
) cl-1]-1
rewrite 1
codey eg p' (sd +n)
sliden // deallocates local variables p .
where p'=p&d{yi— (Lsd+i)|i=1,...,n}h for (i=1; i<=n; i++)
. S[SP+i] = new (C,-1,-1);
In the case of CBV, we also use codey, for the expressions ey, .. ., e,. Sp :[,_;P +In_ ()
Warning;:
Recursive definitions of basic values are undefined with CBV!!!
155 157
For CBN, we obtain:
19 let-rec-Expressions
p codey epsd = allocn // allocates local variables
codec eq|p’ (sd +n)
Consider the expression ¢ =letrecy; =ejand...andy, =¢, ineg fewrite n
The translation of e must deliver an instruction sequence that
o allocates local variables y1, ..., y.; codec e 0] (sd + 1)
e in the case of rewrite 1
CBV: evaluates 1, ..., e, and binds the ; to their values; codey eop\(sd +n)
CBN: constructs closures for the ey, .. ., e, and binds the y; to them; . ' : .
s clostites ! " ° Yi sliden // deallocates local variables

evaluates the expression ¢y and returns its value.

Warning;:

In a letrec-expression, the definitions can use variables that will be allocated
only later!

definition.

154

Dummy-values are put onto the stack before processing the

where o' =p@{yi— (Lisd+i)|i=1,...,n}

In the case of CBV, we also use codey for the expressions ey, .. ., €,.

Warning:

Recursive definitions of basic values are undefined with CBV!!!

The instruction allocn reserves n cells on the stack and initialises them with
n dummy nodes:

] C[-1[-1

allocn | cl-1]-1
=[] 11 n
| cl-1]-1

]

for (i=1; i<=n; i++)
S[SP+i] = new (C,-1,-1);
SP=SP +n;

157

For CBN, we obtain:

codey epsd = allocn // allocates local variables
codec ey p' (sd +n)

rewrite n

codec e, o' (sd +n)
rewrite 1
codey eg o' (sd +n)

slide n // deallocates local variables

where pr=p@{yi— (Lisd+i)|i=1,...,n}
In the case of CBV, we also use codey, for the expressions ¢, .. ., e,.
Warning:

Recursive definitions of basic values are undefined with CBV!!!

The instruction rewriten overwrites the contents of the heap cell pointed to
by the reference at S[SP-n]:

= Ix]

rewrite n

HI[S[SP-n]] = H[S[SP]];
SP=SP-1;

e The reference S[SP-n] remains unchanged!

e Only its contents is changed!

158

For CBN, we obtain:

codey epsd = allocn // allocates local variables

codec ey p' (sd+n)

Jewriten

codec e, o' (sd +n)

rewrite 1

codey e p' (sd +n)

sliden // deallocates local variables

where ' =p@{yi— (Lisd+i)|i=1,...,n}
In the case of CBV, we also use codey for the expressions ey, .. ., €,.
Warning:

Recursive definitions of basic values are undefined with CBV!!!

For CBN, we obtain: —
%Q\ -, — (N
L
codey epsd = allocn // allocates local variables

codec ey p’ (sd +n)
rewrite n

(./a 3
codec e, o' (sd +n) e
rewrite 1 (‘a n
codey eg p' (sd +n)
sliden // deallocates local variables

where p'=p&d{yi— (Lsd+i)|i=1,...,n}h

In the case of CBV, we also use codey, for the expressions ey, .. ., e,.

Warning;:

Recursive definitions of basic values are undefined with CBV!!!

155

For CBN, we obtain:

codey epsd = allocn // allocates local variables
codec ey p' (sd +n)

rewrite n <

codec e, o' (sd +n)

rewrite 1 6‘

codey eg o' (sd +n) &

— ——
slide n // deallocates local variables
——

where pr=p@{yi— (Lisd+i)|i=1,...,n}

In the case of CBV, we also use codey, for the expressions ¢, .. ., e,.

Warning:

Recursive definitions of basic values are undefined with CBV!!!

155

Example:

!
{
Consider the expression ’0\ ©™

e=letrec f =funxy — ify <1thenx elseif ’A* y)(y—1)in f1
=

for p = {) and sd = 0. We obtain (for CBV):

0y allocl 0 Ay targ2 4 loadc 1

1 ' pushloc0 0 5 mkbasic
S

2 mkvecl 1 return 2 5 pushloc 4

2 T mkfunval A 2 B rewrite 1 6 apply
e e e —_— -

2 jumpB 1 mark C 2 G slidel
S—

156

20 Closures and their Evaluation

o Closures are needed for the implementation of CBN and for functional

paramaters.

o Before the value of a variable is accessed (with CBN), this value must be

available.
o Otherwise, a stack frame must be created to determine this value.

o This task is performed by the instruction eval.

159

eval can be decomposed into small actions:

eval = if (H[S[SP]]=(C,_,)){

mark0; /{ allocation of the stack frame 17
. mark0

pushloc 3; // copying of the reference

apply0; // corresponds to apply

) e T i o GP [~ V[[
& rem@ L el

A closure can be understood as a parameterless function. Thus, there is no

need for an ap-component. S[SP+1] = GP;

. . — . S[SP+2] = FP;

* Evaluation of the closure thus means evaluation of an application of this S[SP+3] = PC;
function to 0 arguments. FP =SP = SP ’+ 3;

In constrastto mark A, mark0 dumps the current PC.

The difference between apply and apply0 is that no argument vector
is put on the stack.

160 161

eval canbe decomposed into small actions:

cp gp cp gp eval = if (H[S[SP]]=(C,__)){
—
(C[42] VI 11 [Cl42] W‘] markO0; // allocation of the stack frame

apply0 shloc 3; // copyi
Gp [] GP pushloc 3; // copying of the reference

pC [PC apply0; // corresponds to apply

h = S[SP]; SP-;
GP =h—gp; PC=h—cp; o A closure can be understood as a parameterless function. Thus, there is no

need for|an ap-component.

o Evaluationof the closure thus means evaluation of an application of this
function to 0 arguments.

We thus obtain for the instruction ~ eval: e Inconstrastto mark A , mark0 dumps the current PC.

o The difference between apply and apply0 isthat no argument vector
is put on the stack.

162 160

The construction of a closure for an expression e consists of:

'__ » Packing the bindings for the free variables into a vector;
17
1 » Creation of a C-object, which contains a reference to this vector and to the
| 3| cpy gp code for the evaluation of e:
L [Cl42] =V [| apply0 codecepsd = getvar zg p sd

etvarzy p (sd +1
. op sy
T H= P

getvarzo_ 1 p (sd +g—1)
mkvecg

mkeclos A
3 cp gp

jump B
[Cla2] =N] JEmP

A: codeyep 0

GP update

FP - P B:

where {zo,...,zg_1} =free(e) and p' = {z— (G,i)|i=0,...,g—1}

164 165

The construction of a closure for an expression ¢ consists of:

e Packing the bindings for the free variables into a vector; In fact, the instruction update is the combination of the two actions:
e Creation of a C-object, which contains a reference to this vector and to the popeny
code for the evaluation of e: rewrite 1

codecepsd = getvar zp p sd

getvarzy p (sd +1) It overwrites the closure with the computed value.

getvarz, ; p (sd +g—1) -
mkvec g 1 (1]

mkclos A] update

jump B =[] =T
A: codeyep 0

— D)
update =

i GP |19
B: ... — -

where {zq,...,z; 1} = free(e) and p'={z— (G,i)|i=0,...,g—1}.

165 168

The construction of a closure for an expression e consists of:
» Packing the bindings for the free variables into a vector;
e The instruction mkclos A is analogous to the instruction mkfunval A. e Creation of a C-object, which contains a reference to this vector and to the

o It generates a C-object, where the included code pointer is A. code for the evaluation of ¢:

codecepsd = getvar zg p sd
EEI;I getvarzy p (sd 4+ 1)

getvarzo_ 1 p (sd +g—1)

mkclos|A
=

mkvecg

mkeclos A

— = jump B
A: codeyep 0
S[SP] = new (C, A, S[SP]); update
B:

where {zo,...,zg_1} =free(e) and p' = {z— (G,i)|i=0,...,g—1}

In fact, the instruction update is the combination of the two actions:

Example: popeny
rewrite 1
Consider e = a*a withp = {a~ (L,0)} and sd = 1. We obtain: It overwrites the closure with the computed value.
1 pushloc1 0 A7 pushglob0 2 getbasic -
2 mkvecl 1 eval 2 mul =51 D:I
FP ——>| 42 FP
2 mkclos A 1 getbasic 1 mkbasic L update
. 19
2 ump B 1 pushglob 0 1 update —
juny push P e i =T
2 eval 2 B .
— PC
] | GP

166 168

In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

FP ——=| 42

update

21 Optimizations I: Global Variables

Observation:

» Functional programs construct many F- and C-objects.

o This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expressione ...

168 169
A 4a~ nrd
LA bec
codecepsd = g t\'a}“g ohsd > & ‘;{ t C (1
getvarzy p (sd +1)
- - or [V I or [V I

getvarzg_; p (sd+g—1) copyglob
mkvecg
mkclos A
jump B

A: codeyep’ 0 _— L
update SPas:

B: S[SP] = GP;

where {zq,...,zg1} =free(e) and o' ={z— (Gi)[i=0,...,g—1}

170 172

o The optimization will cause Global Vectors to contain more components

than just references to the free the variables that occur in one expression ... 22 OPtllIllZCll’lOllS I: ~ Closures

Disadvantage: ~ Superfluous components in Global Vectors prevent the In some cases, the construction of closures can be avoided, namely for

deallocation of already useless heap objects —= Space Leaks :-(.
e Basic values,

Potential Remedy: Deletion of references at the end of their life time. .
e Variables,

e Functions.

173 174

Variables:

Variables are either bound to values or to C-objects. Constructing another

o closure is therefore superfluous. Therefore:
Basic Values:

The construction of a closure for the value is at least as expensive as the codecxpsd = getvarxpsd
construction of the B-object itself!
Therefore: This replaces:
codecbpsd = codeybpsd = loadch
mkbasic getvar x psd mkclos A A: pushglob 0 update
mkvec 1 jump B eval B:
This replaces: Example: e=letreca=bandb=7ina. codeye PO
produces:
mkvec 0 jump B mkbasic B:
kclos A A: loadch dat
fkclos oade upeate 0 alloc2 3 | rewrite 2 3 mkbasic 2 | pushloc 1
2 | pushloc0 2 loadc?7 3 rewritel 3 \eval
3 slide2

175 176

Variables:

0 alloc2 3 i 3 sic 2 S
Variables are either bound to values or to C-objects. Constructing another 0 alloc rewrite 2 mkbasic pushloc 1
closure is therefore superfluous. Therefore: 2 pushlocD 2 loade? 5 rewrite1 3 eval
3 slide2
codecxpsd = getvarxpsd
This replaces:
getvar x p sd mkclos A A: ushglob 0 update
) : Pusts P alloc 2
mkvec 1 jump B eval B:
Example: e=letreca=bandb=7ina. codey e @ 0
produces:
0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval
3 slide2
176 178
0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2 3 slide2
rewrite 2 rewrite 2

-1

[F={c]-1]

180

[b= {c]-1]

180

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2 3 slide2
eval pushloc 1
—=C| -1] -1
— B| 7 —>B| 7
| F={c]1] [F={c]-1]2
185 184
0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mbkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc7 3 rewritel 3 eval
3 slide2 3 slide2
eval loadc 7
=]
| C {1
- -l O _ -
Bl 7 1 1

185 181

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1

2 pushloc0 2 loadc?7 3 rewritel 3 eval
Apparently, this optimization was not quite correct :~(fide 2
3 slide
The Problem:
Binding of variable y to variable x before x’s dummy node is replaced!!
The Solution: .) I P |
Segmentatiom FaultH
cyclic definitions: reject sequences of definitions like
leta=b;...b=ain
acyclic definitions: order the definitions y = x such that the dummy node for
the right side of x is already overwritten.
187 186
0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mbkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2 3 slide2
alloc 2 rewrite 2

[b= {c]-1]

178 180

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval
3 slide2

rewrite 2

180

0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1

W

eval
3 slide 2

2 pushloc0 2 loadc?7 3 rewritel

pushloc 1

184

Functions:

Functions are values, which are not evaluated further. Instead of generating
code that constructs a closure for an F-object, we generate code that constructs
the F-object directly.

Therefore:

codec (fun xg...x_1 —¢) psd = codey (funxg...x1 —¢) psd

188

23 The Translation of a Program Expression

Execution of a program ¢ starts with
PC=0 SP=FP=GP=-1
The expression e must not contain free variables.

The value of e should be determined and thena halt instruction should be

executed.

codee = codeyel0

halt

189

Remarks:

e The code schemata as defined so far produce Spaghetti code.

* Reason: Code for function bodies and closures placed directly behind the
instructions mkfunval resp. mkclos with a jump over this code.

¢ Alternative: Place this code somewhere else, e.g. following the
halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and
mkclos.

Disadvantage: The code schemata are more complex as they would have to
accumulate the code pieces in a Code-Dump.

Solution:

Disentangle the Spaghetti code in a subsequent optimization phase :-)

190

Example:

leta=17inlet f =funb — a+bin f 42

Disentanglement of the jumps produces:

(3]

[38]

loadc 17
mkbasic
pushloc 0
mkvec 1
mkfunval A

mark B
loadc 42
mkbasic
pushloc 4
eval

apply

191

slide 2
halt

targ 1
pushglob 0
eval

getbasic

|3 I e

[

pushloc 1
eval
getbasic
add
mkbasic

return 1

