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The first instruction to be executed when entering a function body, i.e., after an
apply is targk.

Duration: 80:10 min This instruction checks whether there are enough arguments to evaluate the
body.
Pages- 57 Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP - FP
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The instruction mkvec0 takes all references from the stack above FP and
stores them into a vector:

targ k isa complex instruction. ] Y
-
8

We decompose its execution in the case of under-supply into several steps:

\!
mkvecO - -
targk = if (SP-FP <k){ g e =
mkvecO; creating the argumentvector ) = ——
[ e e et P ——s
wrap; // wrapping into an F —object
popenv; // popping the stack frame
} J— J—
N . . L . C =5P=FD; h = new (V, g);
The combination of these steps into one instruction is a kind of optimization :-) SP = FP+1;

for (i=0; i<g; i++)
h—v[i] = S[SP +i];
S[SP] = h;
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Case: Done

or [ & J—
ve [ / pC

N % popenv

FP ——=|17 = FP
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——(1 - [

Iy g VAN o e AR

Case: Over-supply

[FL] [FI]

Py slide k apply

FP==m] | FP
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o The stack frame can be released after the execution of the body if exactly the

right number of arguments was available.

o If there is an oversupply of arguments, the body must evaluate to a function,

which consumes the rest of the arguments ...

o The check for this is done by return k:

[

returnk = if (SP—-FP=k+1)

popenv; /{ Done

else { // There are more arguments
slide k;
apply; /{ another application

}

The execution of return k results in:
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19 let-rec-Expressions

A J

Consider the expression e =letrecy; =¢ejand...andy, =¢, ineg

=~ =
The translation of ¢ must deliver an instruction sequence that
 allocates local variables y1, ..., yu;

e in the case of
CBV: evaluates ey, ..., e, and binds the y; to their values;
CBN: constructs closures for the ey, .. ., e; and binds the y; to them;

» evaluates the expression ¢y and returns its value.

Warning:

In a letrec-expression, the definitions can use variables that will be allocated
only later! ——= Dummy-values are put onto the stack before processing the
definition.
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For CBN, we obtain:

codey epsd = allocn // allocates local variables

codec ey p’ (sd +n)

The instruction allocn reserves n cells on the stack and initialises them with
n dummy nodes:

rewrite n
Cl-1]|-1
allocn Cl-11-1
n
codec e, o' (sd +n) Cl-1[-1
) cl-1]-1
rewrite 1
codey eg p' (sd +n)
sliden // deallocates local variables p .
where p'=p&d{yi— (Lsd+i)|i=1,...,n}h for (i=1; i<=n; i++)
. S[SP+i] = new (C,-1,-1);
In the case of CBV, we also use codey, for the expressions ey, .. ., e,. Sp :[,_;P +In_ ( )
Warning;:
Recursive definitions of basic values are undefined with CBV!!!
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For CBN, we obtain:
19 let-rec-Expressions
p codey epsd = allocn // allocates local variables
codec eq|p’ (sd +n)
Consider the expression ¢ =letrecy; =ejand...andy, =¢, ineg fewrite n
The translation of e must deliver an instruction sequence that
o allocates local variables y1, ..., y.; codec e 0] (sd + 1)
e in the case of rewrite 1
CBV: evaluates 1, ..., e, and binds the ; to their values; codey eop\(sd +n)
CBN: constructs closures for the ey, .. ., e, and binds the y; to them; . ' : .
s clostites ! " ° Yi sliden // deallocates local variables

evaluates the expression ¢y and returns its value.

Warning;:

In a letrec-expression, the definitions can use variables that will be allocated
only later!

definition.
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Dummy-values are put onto the stack before processing the

where o' =p@{yi— (Lisd+i)|i=1,...,n}

In the case of CBV, we also use codey for the expressions ey, .. ., €,.

Warning:

Recursive definitions of basic values are undefined with CBV!!!




The instruction allocn reserves n cells on the stack and initialises them with
n dummy nodes:

] C[-1[-1

allocn | cl-1]-1
=[] 11 n
| cl-1]-1

]

for (i=1; i<=n; i++)
S[SP+i] = new (C,-1,-1);
SP=SP +n;
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For CBN, we obtain:

codey epsd = allocn // allocates local variables
codec ey p' (sd +n)

rewrite n

codec e, o' (sd +n)
rewrite 1
codey eg o' (sd +n)

slide n // deallocates local variables

where pr=p@{yi— (Lisd+i)|i=1,...,n}
In the case of CBV, we also use codey, for the expressions ¢, .. ., e,.
Warning:

Recursive definitions of basic values are undefined with CBV!!!

The instruction rewriten overwrites the contents of the heap cell pointed to
by the reference at S[SP-n]:

= Ix ]

rewrite n

HI[S[SP-n]] = H[S[SP]];
SP=SP-1;

e The reference S[SP-n] remains unchanged!

e Only its contents is changed!
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For CBN, we obtain:

codey epsd = allocn // allocates local variables

codec ey p' (sd+n)

Jewriten

codec e, o' (sd +n)

rewrite 1

codey e p' (sd +n)

sliden // deallocates local variables

where ' =p@{yi— (Lisd+i)|i=1,...,n}
In the case of CBV, we also use codey for the expressions ey, .. ., €,.
Warning:

Recursive definitions of basic values are undefined with CBV!!!




For CBN, we obtain: —
%Q\ -, — (N
L
codey epsd = allocn // allocates local variables

codec ey p’ (sd +n)
rewrite n

(./a 3
codec e, o' (sd +n) e
rewrite 1 (‘a n
codey eg p' (sd +n)
sliden // deallocates local variables

where p'=p&d{yi— (Lsd+i)|i=1,...,n}h

In the case of CBV, we also use codey, for the expressions ey, .. ., e,.

Warning;:

Recursive definitions of basic values are undefined with CBV!!!
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For CBN, we obtain:

codey epsd = allocn // allocates local variables
codec ey p' (sd +n)

rewrite n <

codec e, o' (sd +n)

rewrite 1 6‘

codey eg o' (sd +n) &

— ——
slide n // deallocates local variables
——

where pr=p@{yi— (Lisd+i)|i=1,...,n}

In the case of CBV, we also use codey, for the expressions ¢, .. ., e,.

Warning:

Recursive definitions of basic values are undefined with CBV!!!
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Example:

!
{
Consider the expression ’0\ ©™

e=letrec f =funxy — ify <1thenx elseif ’A* y)(y—1)in f1
=

for p = {) and sd = 0. We obtain (for CBV):

0y allocl 0 Ay targ2 4 loadc 1

1 ' pushloc0 0 5 mkbasic
S

2 mkvecl 1 return 2 5 pushloc 4

2 T mkfunval A 2 B rewrite 1 6 apply
e e e —_— -

2 jumpB 1 mark C 2 G slidel
S—

156

20 Closures and their Evaluation

o Closures are needed for the implementation of CBN and for functional

paramaters.

o Before the value of a variable is accessed (with CBN), this value must be

available.
o Otherwise, a stack frame must be created to determine this value.

o This task is performed by the instruction eval.
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eval can be decomposed into small actions:

eval = if (H[S[SP]]=(C,_, )){

mark0; /{ allocation of the stack frame 17
. mark0

pushloc 3; // copying of the reference

apply0; // corresponds to apply

) e T i o GP [~ V[ [
& rem@ L el

A closure can be understood as a parameterless function. Thus, there is no

need for an ap-component. S[SP+1] = GP;

. . — . S[SP+2] = FP;

* Evaluation of the closure thus means evaluation of an application of this S[SP+3] = PC;
function to 0 arguments. FP =SP = SP ’+ 3;

In constrastto mark A, mark0 dumps the current PC.

The difference between apply and apply0 is that no argument vector
is put on the stack.
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eval canbe decomposed into small actions:

cp gp cp gp eval = if (H[S[SP]]=(C,__)){
—
(C[42] VI 11 [Cl42] W‘ ] markO0; // allocation of the stack frame

apply0 shloc 3; // copyi
Gp [ ] GP pushloc 3; // copying of the reference

pC [ PC apply0; // corresponds to apply

h = S[SP]; SP-;
GP =h—gp; PC=h—cp; o A closure can be understood as a parameterless function. Thus, there is no

need for|an ap-component.

o Evaluationof the closure thus means evaluation of an application of this
function to 0 arguments.

We thus obtain for the instruction ~ eval: e Inconstrastto mark A , mark0 dumps the current PC.

o The difference between apply and apply0 isthat no argument vector
is put on the stack.
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The construction of a closure for an expression e consists of:

'__ » Packing the bindings for the free variables into a vector;
17
1 » Creation of a C-object, which contains a reference to this vector and to the
| 3| cpy gp code for the evaluation of e:
L [Cl42] =V [ | apply0 codecepsd = getvar zg p sd

etvarzy p (sd +1
. op sy
T H= P

getvarzo_ 1 p (sd +g—1)
mkvecg

mkeclos A
3 cp gp

jump B
[Cla2] =N ] JEmP

A: codeyep 0

GP update

FP - P B:

where  {zo,...,zg_1} =free(e) and p' = {z— (G,i)|i=0,...,g—1}
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The construction of a closure for an expression ¢ consists of:

e Packing the bindings for the free variables into a vector; In fact, the instruction update is the combination of the two actions:
e Creation of a C-object, which contains a reference to this vector and to the popeny
code for the evaluation of e: rewrite 1

codecepsd = getvar zp p sd

getvarzy p (sd +1) It overwrites the closure with the computed value.

getvarz, ; p (sd +g—1) -
mkvec g 1 (1]

mkclos A ] update

jump B =[] =T
A: codeyep 0

— D)
update =

i GP |19
B: ... — -

where  {zq,...,z; 1} = free(e) and p'={z— (G,i)|i=0,...,g—1}.
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The construction of a closure for an expression e consists of:
» Packing the bindings for the free variables into a vector;
e The instruction mkclos A is analogous to the instruction mkfunval A. e Creation of a C-object, which contains a reference to this vector and to the

o It generates a C-object, where the included code pointer is A. code for the evaluation of ¢:

codecepsd = getvar zg p sd
EEI;I getvarzy p (sd 4+ 1)

getvarzo_ 1 p (sd +g—1)

mkclos|A
=

mkvecg

mkeclos A

— = jump B
A: codeyep 0
S[SP] = new (C, A, S[SP]); update
B:

where  {zo,...,zg_1} =free(e) and p' = {z— (G,i)|i=0,...,g—1}

In fact, the instruction update is the combination of the two actions:

Example: popeny
rewrite 1
Consider e = a*a withp = {a~ (L,0)} and sd = 1. We obtain: It overwrites the closure with the computed value.
1 pushloc1 0 A7 pushglob0 2 getbasic -
2 mkvecl 1 eval 2 mul =51 D:I
FP ——>| 42 FP
2 mkclos A 1 getbasic 1 mkbasic L update
. 19
2 ump B 1 pushglob 0 1 update —
juny push P e i =T
2 eval 2 B .
— PC
] | GP
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In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

FP ——=| 42

update

21 Optimizations I: Global Variables

Observation:

» Functional programs construct many F- and C-objects.

o This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expressione ...
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A 4a~ nrd
LA bec
codecepsd = g t\'a}“g ohsd > & ‘;{ t C (1
getvarzy p (sd +1)
- - or [V I or [V I

getvarzg_; p (sd+g—1) copyglob
mkvecg
mkclos A
jump B

A: codeyep’ 0 _— L
update SPas:

B: S[SP] = GP;

where {zq,...,zg1} =free(e) and o' ={z— (Gi)[i=0,...,g—1}
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o The optimization will cause Global Vectors to contain more components

than just references to the free the variables that occur in one expression ... 22 OPtllIllZCll’lOllS I: ~ Closures

Disadvantage: ~ Superfluous components in Global Vectors prevent the In some cases, the construction of closures can be avoided, namely for

deallocation of already useless heap objects —= Space Leaks :-( .
e Basic values,

Potential Remedy: Deletion of references at the end of their life time. .
e Variables,

e Functions.
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Variables:

Variables are either bound to values or to C-objects. Constructing another

o closure is therefore superfluous. Therefore:
Basic Values:

The construction of a closure for the value is at least as expensive as the codecxpsd = getvarxpsd
construction of the B-object itself!
Therefore: This replaces:
codecbpsd = codeybpsd = loadch
mkbasic getvar x psd mkclos A A: pushglob 0 update
mkvec 1 jump B eval B:
This replaces: Example: e=letreca=bandb=7ina. codeye PO
produces:
mkvec 0 jump B mkbasic B:
kclos A A:  loadch dat
fkclos oade upeate 0 alloc2 3 | rewrite 2 3 mkbasic 2 | pushloc 1
2 | pushloc0 2 loadc?7 3 rewritel 3 \eval
3 slide2
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Variables:

0 alloc2 3 i 3 sic 2 S
Variables are either bound to values or to C-objects. Constructing another 0 alloc rewrite 2 mkbasic pushloc 1
closure is therefore superfluous. Therefore: 2 pushlocD 2 loade? 5 rewrite1 3 eval
3 slide2
codecxpsd = getvarxpsd
This replaces:
getvar x p sd mkclos A A: ushglob 0 update
) : Pusts P alloc 2
mkvec 1 jump B eval B:
Example: e=letreca=bandb=7ina. codey e @ 0
produces:
0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval
3 slide2
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0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2 3 slide2
rewrite 2 rewrite 2

-1

[ F={c]-1 ]

180

[ b= {c]-1 ]
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0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2 3 slide2
eval pushloc 1
—=C| -1] -1
— B| 7 —>B| 7
| F={c]1 ] [ F={c]-1 ]2
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0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mbkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc7 3 rewritel 3 eval
3 slide2 3 slide2
eval loadc 7
=]
| C {1
- -l O _ -
Bl 7 1 1
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0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1

2 pushloc0 2 loadc?7 3 rewritel 3 eval
Apparently, this optimization was not quite correct :~( fide 2
3 slide
The Problem:
Binding of variable y to variable x before x’s dummy node is replaced!!
The Solution: . ) I P |
Segmentatiom FaultH
cyclic definitions: reject sequences of definitions like
leta=b;...b=ain ....
acyclic definitions: order the definitions y = x such that the dummy node for
the right side of x is already overwritten.
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0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrite 2 3 mbkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval 2 pushloc0 2 loadc?7 3 rewritel 3 eval
3 slide2 3 slide2
alloc 2 rewrite 2

[ b= {c]-1 ]
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0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1
2 pushloc0 2 loadc? 3 rewritel 3 eval
3 slide2

rewrite 2
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0 alloc2 3 rewrite 2 3 mkbasic 2 pushloc1

W

eval
3 slide 2

2 pushloc0 2 loadc?7 3 rewritel

pushloc 1
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Functions:

Functions are values, which are not evaluated further. Instead of generating
code that constructs a closure for an F-object, we generate code that constructs
the F-object directly.

Therefore:

codec (fun xg...x_1 —¢) psd = codey (funxg...x1 —¢) psd
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23 The Translation of a Program Expression

Execution of a program ¢ starts with
PC=0 SP=FP=GP=-1
The expression e must not contain free variables.

The value of e should be determined and thena halt instruction should be

executed.

codee = codeyel0

halt
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Remarks:

e The code schemata as defined so far produce Spaghetti code.

* Reason: Code for function bodies and closures placed directly behind the
instructions mkfunval resp. mkclos with a jump over this code.

¢ Alternative: Place this code somewhere else, e.g. following the
halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and
mkclos.

Disadvantage: The code schemata are more complex as they would have to
accumulate the code pieces in a Code-Dump.

Solution:

Disentangle the Spaghetti code in a subsequent optimization phase  :-)
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Example:

leta=17inlet f =funb — a+bin f 42

Disentanglement of the jumps produces:

(3]

[38]

loadc 17
mkbasic
pushloc 0
mkvec 1
mkfunval A

mark B
loadc 42
mkbasic
pushloc 4
eval

apply

191

slide 2
halt

targ 1
pushglob 0
eval

getbasic

|3 I e

[

pushloc 1
eval
getbasic
add
mkbasic

return 1




