Script generated by TTT

Title:
Date:
Duration:

Pages:

Seidl: Virtual_Machines (16.04.2013)
Tue Apr 16 14:05:05 CEST 2013
86:12 min

22

Helmut Seidl

Virtual Machines

Miinchen

Summer 2013

0 Introduction

Principle of Interpretation:

Program + Input Interpreter Output

Advantage: No precomputation on the program text ——= no/short
startup-time

Disadvantages: Program parts are repeatedly analyzed during execution +
less efficient access to program variables

—— slower execution speed

(=)

Principle of Compilation:

P
Program Compiler Code
A

Input Code QOutput
.

Two Phases (at two different Times):

¢ Translation of the source program into a machine program (at compile time);

e Execution of the machine program on input data (at run time).

0 Introduction

Principle of Interpretation:

Program + Input Interpreter Output

Advantage: ~ No precomputation on the program text —= no/short
startup-time

Disadvantages: Program parts are repeatedly analyzed during execution +
less efficient access to program variables

—= slower execution speed

X}

Preprocessing of the source program provides for
» efficient access to the values of program variables at run time
¢ global program transformations to increase execution speed.
Disadvantage: =~ Compilation takes time

Advantage: Program execution is sped up —— compilation pays off in
long running or often run programs

Structure of a compiler:

AT
Source program Frontend
- >V
I 2
Optimizations Internal representation

"

e n

Code Program for
generation target machine

Internal representation
(Syntax tree)

Subtasks in code generation:

Goal is a good exploitation of the hardware resources:

1. Instruction Selection: ~ Selection of efficient, semantically equivalent
instruction sequences;

2. Register-allocation: Best use of the available processor registers

(5]

. Instruction Scheduling: ~ Reordering of the instruction stream to exploit
intra-processor parallelism

For several reasons, e.g. modularization of code generation and portability, code
generation may be split into two phases:

Subtasks in code generation:

Goal is a good exploitation of the hardware resources:

1. Instruction Selection: ~ Selection of efficient, semantically equivalent
instruction sequences;

2. Register-allocation: Best use of the available processor registers
3. Instruction Scheduling: Reordering of the instruction stream to exploit

intra-processor parallelism

For several reasons, e.g. modularization of code generation and portability, code
generation may be split into two phases:

6 6
NN,
Intermediate Code abstract machine Virtual machine
representation i code . . .
F generation e idealized architecture,
.~
o simple code generation,
» easily implemented on real hardware. e
abstract machine Crarmsiila: concrete machine .
cade P code Advantages:
alternatively: ? é! E o Porting the compiler to a new target architecture is simpler,
* Modularization makes the compiler easier to modify,
Input Interpreter Output o Translation of program constructs is separated from the exploitation of
architectural features.

~

Virtual (or: abstract) machines for some programming languages:

Pascal

Smallta

Prolog

SML, Haskell

Java

P-machine
1k Bytecode

WAM (“Warren Abstract Machine™)
STGM

JVM

N A

We will consider the following languages and virtual machines:

C —+ CMa // imperative
PuF — MaMa // functional
Proll — WiM // logic based
C+ — OMa // object oriented
multi-threaded C — threaded CMa // concurrent

The Translation of C

1 The Architecture of the CMa

o Each virtual machine provides a set of instructions
e Instructions are executed on the virtual hardware

e This virtual hardware can be viewed as a set of data structures, which the

instructions access

o ... and which are managed by the run-time system

For the CMa we need:

The Data Store:

s [|

0 F {:I SP
¢ S is the (data) store, onto which new cells are allocated in a LIFO discipline
—— Stack.

o SP (= Stack Pointer) is a register, which contains the address of the topmost
allocated cell,
Simplification: ~ All types of data fit into one cell of 5.

The Code/Instruction Store:

L

o LT [|
01 T]

o Cis the Code store, which contains the program.

Each cell of field C can store exactly one virtual instruction.

e PC (= Program Counter) is a register, which contains the address of the
instruction to be executed next.

o Initially, PC contains the address 0.

—— (0] contains the instruction to be executed first.

14

Execution of Programs:

o The machine loads the instruction in C[PC] into a Instruction-Register [R
and executes it

e PCis incremented by 1 before the execution of the instruction
while (true) {
execute (IR);
}
o The execution of the instruction may overwrite the PC (jumps).

e The Main Cycle of the machine will be halted by executing the instruction
— halt , which returns control to the environment, e.g. the operating system

* More instructions will be introduced by demand

2 Simple expressions and assignments

Problem: evaluate the expression (1+7)%3 !
This means: generate an instruction sequence, which
o determines the value of the expression and

o pushes it on top of the stack...

[dea:
o first compute the values of the subexpressions,
» save these values on top of the stack,

o then apply the operator.

2 Simple expressions and assignments

Problem: evaluate the expression (1+7)%3 !
This means: generate an instruction sequence, which
o determines the value of the expression and

o pushes it on top of the stack...

Idea:
o first compute the values of the subexpressions,
» save these values on top of the stack,

o then apply the operator.

The general principle:
» instructions expect their arguments on top of the stack,
* execution of an instruction consumes its operands,

o results, if any, are atored on top of the stack.

RY g D fonde 335’

SP++;

S[SP] = q
Instruction loadcq needs no operand on top of the stack, pushes the
constant q onto the stack.

Note: the content of register SI is only implicitly represented, namely through
the height of the stack.

17

Execution of Programs:

o The machine loads the instructionip C[PC] into a Instruction-Register [R

and executes it
e PCis incremented by 1 before the execution of the instruction
while (true) {
IR = C[PC]; PC++;
execute (IR);
}
o The execution of the instruction may overwrite the PC (jumps).

e The Main Cycle of the machine will be halted by executing the instruction
halt , which returns control to the environment, e.g. the operating system

* More instructions will be introduced by demand

