Script generated by TTT

The code for returne; corresponds to an assignment to a variable with
relative address —3.

code returne; p = codeg e p
Title: Seidl: Virtual_Machines (30.04.2013) storer -3
return
Date: Tue Apr 30 14:01:29 CEST 2013
Example For function

Duration: 90:36 min

int fac (intx) {
if (x < 0) return 1;

else return x fac (x — 1);

Pages: 34

we generate:

96

_fac: enterq

R

| loadr-3 _fac: enterq loadc 1 A:/I loadr -3 1 mul
loadr -3 alloc 0 storer -3 loadr-3 2_ storer -3

loadr -3 return loade 1 | m‘ loadr -3 return loadc 1 3 return
loadc 0 jump B s> B: | return loadc 0 jump B sub 2. B: return
leq leq mark 4
jump@ jumpz A loadc _fac §
call hY
slide 0
where ppe:x— (L, —3) and gq=1+5=6. where ppe:x— (L, —3) and q =@ 5 %

97 97

10 Translation of Whole Programs

Before program execution, we have:

1921

P=-1 FP=EP =0 PC=0 NP = MAX

Let p=V_defs F_def, ... F_def,, denoteaprogramwhere F_def; is the
definition of a function f; of which one is called main
The code for the program p consists of:

¢ code for the function definitions F_def;;

» code for the allocation of global variables;

e code for the callvon main();

e the instruction halt.

98

Then we define:

codep® = enter (k +5)
alloc (k+1)
mark
loadc _main
call
slide (k+1)
halt

f1: code F_def, p

£t code F_def,, p

where) = empty address environment;

I

o global address environment;

k = size of the global variables

99

10 Translation of Whole Programs

Before program execution, we have:

w

P=-1 FP=EP =0 PC=0 NP = MAX
Let p=V_defs F. def...F_def,, denoteaprogramwhere F_def; is the
definition of a function f; of which one is called main
The code for the program p consists of:

¢ code for the function definitions F_def;;

¢ code for the allocation of global variables;

e code for the call von main();

e the instruction halt.

98

Then we define:

codep® = enter (k +5)
alloc (k+1)
mark
loadc main
call
slide (k+1)
halt

f: code F_def; p

£ code F_def, p

I

where 0 empty address environment;

I

global address environment;

k = size of the global variables

99

T T
L+3

2+L

Then we define:

codep = enter (k 4—’)
alloc (k+1)

mark

loadec _main
call
slide (k -4
halt

_fy: code F_def; p

(o B

f: code F_def, p

where () = empty address environment;

I

0 global address environment;

10 Translation of Whole Programs

Before program execution, we have:

w

P=-1 FP=EP=0 PC=0 NP = MAX

Let p=V_defs F_def, ... F_def,

nt

denote a program where F_def; is the
definition of a function f; of which one is called main

The code for the program p consists of:
e code for the function definitions F_def;;
o code for the allocation of global variables;

e code for the call von main();

e the instruction halt. /& W /)m‘(

k = size of the global variables
99 98
Then we define: Then we define:
codep® = enter (k -1'—-5) codep® = enter (k +5)
alloc (k+1) alloc (k+1)
mark mark

loadc _main
call
slide (k)
halt

f: code F_def; p

f.: code F_def, p

I

where empty address environment;

I

global address environment;

k = size of the global variables

99

loadc main
call
slide (k+1)
halt

f: code F_def; p

£ code F_def, p

I

where 0 empty address environment;

I

global address environment;

k = size of the global variables

99

The Translation of Functional
Programming Languages

100

11 The language PuF

&L/@M

We only regard a mini-language PuF (“Pure Functions”).
We do not treat, as yet:

e Side effects;

e Data structures.

101

\
‘6/#_ - > —
A program is an expression ¢ of the form:
= A
e = b| x| (Ore) | (eyOpe2) t+ 1,

(if ep then ¢; else e)
(e'eg...ex_1)

(fun xp... x;_1 —¢)
(let x; =" in &)

(let rec X7 =7 and...and x, = ¢, in ep)

An expression is therefore
® abasic value, a variable, the application of an operator, or
* a function-application, a function-abstraction, or
* alet-expression, i.e. an expression with locally defined variables, or

¢ a let-rec-expression, i.e. an expression with simultaneously defined local
variables.

For simplicity, we only allow int as basic type.

102

Example:

The following well-known function computes the factorial of a natural number:

letrecfac = funx — ifx <1thenl

else x - fac (x — 1)
As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in
SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their
value is needed (as in Haskell).

103

Example:

The following well-known function computes the factorial of a natural number:

letrecfac = fun x — ifx < 1then 1
else x - fac (x — 1)
in fac? ™ ™

As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in
SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their
P« r“%

103

value is needed (as in Haskell).

Example:

The following well-known function computes the factorial of a natural number:

letrec fac = funx — ifx < 1then1
else x - fac (x — 1)
in fac7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in
SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their
value is needed (as in Haskell).

103

12 Architecture of the MaMa:

We know already the following components:

01 f D PC

C = Code-store — contains the MaMa-program;
each cell contains one instruction;

PC = Program Counter — points to the instruction to be executed next;

104

s L
0 1 Sp
} FP
S = Runtime-5tack — each cell can hold a basic value or an address;
SP = Stack-Pointer — points to the topmost occupied cell;
as in the CMa implicitely represented;
FP = Frame-Pointer - points to the actual stack frame.

105

We also need a heap H:

106

= ~

U BB c

Tag

Code Pointer

Value

Heap Pointer

s | [L[]
0 1 Sp
} FP
S = Runtime-5tack — each cell can hold a basic value or an address;
SP = Stack-Peinter — points to the topmost occupied cell;
as in the CMa implicitely represented;
FP = Frame-Pointer — points to the actual stack frame.

105

We also need a heap H:

= o

106

B o

Tag

Code Pointer

Value

Heap Pointer

... it can be thought of as an abstract data type, being capable of holding data

objects of the following form:

Basic Value

Closure
gp
‘ Function
,,,,,, v|n-1]
| | | Vector

The instruction new (tag, args) creates a corresponding object (B, C,E V) in H
and returns a reference to it.

We distinguish three different kinds of code for an expression e:

e codey ¢ — (generates code that) computes the Value of ¢, stores it in the
heap and returns a reference to it on top of the stack (the normal case);

® codep ¢ — computes the value of ¢, and returns it on the top of the stack
(only for Basic types);

codec ¢ — does not evaluate e, but stores a Closure of e in the heap and

returns a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

The instruction new (tag, args) creates a corresponding object (B, C,E V) in H
and returns a reference to it.

We disti

uish three different kinds of code for an expression e:

=

asic types);

o codec ¢ — does not evaluate ¢, but stores a Closure of ¢ in the heap and
/% returns a reference to the closure on top of the stack.

‘We start with the code schemata for the first two kinds:

108 108
13 Simple expressions
Expressions consisting only of constants, operator applications, and conditionals codep (if ¢ then ey else ey) psd = codeg ep p sd
are translated like expressions in imperative languages: jumpz A
codeg ep p sd
codeg bp sd = loade b jump B
A: codege; psd
codeg (07 ¢) psd = codege p sd B:
op, '
codeg (e1 Oz ex)psd = codepey psd
codegesp (sd+1)
op,
109 110

Note:

e p denotes the actual address environment, in which the expression is
translated.

The extra argument sd, the stack difference, simulates the movement of the
SP when instruction execution modifies the stack. It is needed later to
address variables.

e The instructions op; and op, implement the operators 0y and Oy, in the
same way as the the operators neg and add implement negation resp.
addition in the CMa.

For all other expressions, we first compute the value in the heap and then
dereference the returned pointer:

codegepsd = codeyepsd

getbasic

111

13 Simple expressions

Expressions consisting only of constants, operator applications, and conditionals

are translated like expressions in imperative languages:

codeg b p sd = loadc b

codeg (07 e) p sd = codepepsd
opy

codeg (e1 Oz e2) psd = codep e p sd

codepez p (sd+ 1)

Op >

109

Note:

e p denotes the actual address environment, in which the expression is
translated.

The extra argument sd, the stack difference, simulates the movement of the
SP when instruction execution modifies the stack. It is needed later to
address variables.

e The instructions op, and op, implement the operators 0y and Oy, in the
same way as the the operators neg and add implement negation resp.
addition in the CMa.

For all other expressions, we first compute the value in the heap and then
dereference the returned pointer:

codegepsd = codeyepsd

getbasic

111

) .
getbasic

if (H[S[SP]] = (B,_))
Error “not basic!”;
else
S[SP] = H[S[SP]].v;

112

For codey and simple expressions, we define analogously:

codey bp sd = loadc b; mkbasic
codey (Oj e) p sd = codeg e p sd
opy; mkbasic
codey (e1 Oz e2) p sd = codeg e p sd
codegezp (sd+1)

op,; mkbasic

codey (if ey then e else ez) p sd codeg g p sd
jumpz A
codey e1 p sd
jump B

A: codeyexpsd

113

codey bp sd

codey (Oj ¢) p sd

codey (e1 O e3) p sd

codey (if g then e else ;) p sd

113

For codey and simple expressions, we define analogously:

loadc b; mkbasic

codeg e p sd

op;; mkbasic
codeg ey p sd
codegesp (sd + 1)
op,; mkbasic
codeg eg p sd
jumpz A

codey ey p sd
jump B

codey ez p sd

14 Accessing Variables

We must distinguish between local and global variables.

Example: Regard the function f :

in fe
The function f uses the global variable ¢ and the local variables a (as formal
parameter) and b (introduced by the inner let).

The binding of a global variable is determined, when the function is constructed
(static scoping!), and later only looked up.

115

