Script generated by TTT

18 Over- and Undersupply pf Arguments

Title: Seidl: Virtual_Machines (08.05.2013)

Date: Wed May 08 16:01:15 CEST 2013

The first instruction to be executed when entering a function body, i.e., after an
apply is targH.

Duration: 92:16 min This instruction checks whether there are enough arguments to evaluate the
body.
Pages- 48 Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses:

146

(/%%,La—ﬁ 1%

targk isa complex instruction. targ k is a complex instruction.
We decompose its execution in the case of under-supply into several steps: We decompose its execution in the case of under-supply into several steps:
targk = if (SP-FP < k) { targk = if (SP-TFP <K) |
mkvec0; // creating the argumentvector mkvec(; // creating the argumentvector
wrap; // wrapping into an F — object wrap; // wrapping into an F — object
popenv; // popping the stack frame popenv; // popping the stack frame
b }
The combination of these steps into one instruction is a kind of optimization :-) The combination of these steps into one instruction is a kind of optimization :-)

147 147

The instruction mkvecO takes all references from the stack above FI” and
stores them into a vector:

mkvec0

FP[] > FP [~

g =5SP-FP;h=new (V, g);
SP = FP+1;
for (i=0; i<g; i++)

h—v[i] = S[SP + i];
S[SP] = h;

148

The instruction mkvec0 takes all references from the stack above FP and
stores them into a vector:

mkvecO

P>]

g =SP-FP; h = new (V, g);
SP =FP+1;
for (i=0; i<g; i++)

h—v[i] =S[SP +i];
S[SP] = h;

148

The instruction wrap wraps the argument vector together with the global
vector and PC-1 into an F-object:

ap gp

[Pt
VP~ |

=V [wrap

Y
GP——m[V]] P ——=[V[]

PC PC [42]

S[SP] = new (F, PC-1, S[SP], GP);

149

The instruction popenv finally releases the stack frame:

T —{T1 [T
FP 42| popenv FP
119]

— PC
— Gr [19
— GP = S[EP-2]; —
S[FP-2] = S[SP];

PC = S[FP];

SP=FP-2;

FP = S[EP-1];
150

Thus, we obtain for targ k in the case of under supply:

or NI

or[] V[[PC §
PC T |
- wrap
I — mkvek0
— B —= {17
FP —{ 17 | L
— | V[T
] VT T
151 152
ce[] [Fla[[T F={Vv[[] .
be [22] P [} [FIEL [=V [
Vim PC Vv
MTTTT]
= | popenv

P —17 |

— :
] J VI -

(=2 A1 5

e The stack frame can be releaseda

Ty if eyactly the o The stack frame can be released after the execution of the body if exactly the

right number of arguments was available. right number of arguments was available.

o If there is an oversupply of arguments, the body must evaluate to a function, o If there is an oversupply of arguments, the body must evaluate to a function,

which consumes the rest of the arguments ... which consumes the rest of the arguments ...

o The check for this is done by return k: o The check for this is done by return k:

returnk = if (SP-FP=k+1) returnk = if (SP—FP=k+1)
popenv; // Done popenv; // Done
else { // There are more arguments else { // There are more arguments
slide k; slide k;
apply; // another application apply; // another application

The execution of return k results in:

The execution of return k results in:

155 155
Case: Done Case: Over-supply
or S —
PC PC
[[F[] [F[]
\ fmi —
[| . K -
1{ popenv — slide k apply
FP —315 FP FP _,._: FP -
| e v 7
156 157

Case: Over-supply

[F[] [F[]
— slide k apply

FP ——= FP —

o The stack frame can be released after the execution of the body if exactly the
right number of arguments was available.

o If there is an oversupply of arguments, the body must evaluate to a function,
which consumes the rest of the arguments ...

o The check for this is done by return k:

returnk = if (SP—FP=k+1)
popeny; // Done
else { // There are more arguments
slide k;
apply; // another application

The execution of return k results in:

The instruction mkvecO takes all references from the stack above FP and
stores them into a vector:

Vig ‘

mkvecD

PP PP

g =SP-FP;h=new (V, g);
SP = FP+1;
for (i=0; i<g; i++)

h—sv[i] =S[SP +i];
S[SP] =h;

148

19 let-rec-Expressions

Consider the expression e =letrecy; =¢; and...andy, =¢, inegp
The translation of ¢ must deliver an instruction sequence that
 allocates local variables y1, ..., yu;

e in the case of
CBV: evaluates ey, ..., e, and binds the y; to their values;
CBN: constructs closures for the ey, .. ., e; and binds the y; to them;

» evaluates the expression ¢y and returns its value.

Warning:

In a letrec-expression, the definitions can use variables that will be allocated
only later! ——= Dummy-values are put onto the stack before processing the
definition.

158

For CBN, we obtain:

codey epsd = allocn // allocates local variables
Cudv er 0 (sd+n)

rewrite n

wdv ey ' (sd+n)
rewrite 1
codey eg p' (sd +n)

sliden // deallocates local variables
where p'=p&d{yi— (Lsd+i)|i=1,...,n}h
In the case of CBV, we also use codey, for the expressions ey, .. ., e,.

Warning;:

Recursive definitions of basic values are undefined with CBV!!!

159

<

Consider the expression

Example:

e = let re%\: funx y — ify < 1thenxelse f(x*y)(y—1)in f1

for p = 0 and sd = 0. We obtain (for CBV):

0 allocl targ 2 - loadc 1
1 pushlocO 5 mkbasic
2 mkvecl return 2 5 pushloc 4
2 rewrite 1 6 apply
2 mark C 2 G slidel

160

The instruction allocn reserves n cells on the stack and initialises them with
n dummy nodes:

allocn %

for (i=1; i<=n; i++)
S[SP+i] = new (C,-1,-1);
SP=5P +n;

Cl-1]-1
Cl-1]-1 n
Cl-1]-1
Cl-1]-1

161

The instruction allocn reserves n cells on the stack and initialises them with
n dummy nodes:

alloc n %

for (i=1; i<=n; i++)
S[SP+i] = new (C,-1,-1);
SP=5P +n;

Cl-1]-1
Cl-1]-1 n
Cl-1]-1
Cl-1]-1

161

The instruction rewriten overwrites the contents of the heap cell pointed to

by the reference at S[SP-n]:

— x|

rewrite n

H[S[SP-n]] = H[S[SP]];
SP=SP-1;

e The reference S[SP-n] remains unchanged!

¢ Only its contents is changed!

162

The instruction rewriten overwrites the contents of the heap cell pointed to
by the reference at S[SP-n]:

—{ x|

rewrite n

H[S[SP-n]] = H[S[SP]];
SP=SP-1;

o The reference S[SP-n] remains unchanged!

o Only its contents is changed!

162

20 Closures and their Evaluation

o Closures are needed for the implementation of CBN and for functional
paramaters.

o Before the value of a variable is accessed (with CBN), this value must be
available.

o Otherwise, a stack frame must be created to determine this value.

o This task is performed by the instruction eval.

163

20 Closures and their Evaluation

o Closures are needed for the implementation of CBN and for functional
paramaters.

o Before the value of a variable is accessed (with CBN), this value must be
available.

o Otherwise, a stack frame must be created to determine this value.

o This task is performed by the instruction eval.

163

eval can be decomposed into small actionl- I

eval = if (H[S[SP]|=(C,_) { \
markOF\ /{ allocation of the stack frame
pushloc 3; // copying of the reference
applyO;N // corresponds to apply

mark0

A e = I B i S

A closure can be understood as a parameterless function. Thus, there is no
need for an ap-component.

PC

S[SP+1] = GP;

17

i —
PC

S[SP+2] = FP;

* Evaluation of the closure thus means evaluation of an application of this S%SP:S} _ PC,'

function to 0 arguments. FP =SP = SP ’+ 3;
e Inconstrastto mark A , mark0 dumps the current PC.
o The difference between apply and apply0 is that no argument vector

is put on the stack.

164 165
cp gp
criz Vv [Cle2] }—=Vv[[] cp gp
o apply0 ——{clel_ vl I mark

GP

be

h = S[SP]; SP-;
GP =h—gp; PC = h—cp;

We thus obtain for the instruction eval:

166

— GP
PC

cp gp

Clee] =N [

GP
PC

pushloc 3

17]
3] cp gp
(€2 VT 1] 2pplyo
. B or [3]
T B P
17
3 P 8P

(Cl42] =N []

GP

FP)
PC

168

N
) =F T apply0
p

— GP
FI L PC

3 cp gp

Cle2] = []

168

The construction of a closure for an expression ¢ consists of:
o Packing the bindings for the free variables into a vector;

e Creation of a C-object, which contains a reference to this vector and to the
code for the evaluation of e:
codecepsd = getvar zp p sd

getvarzy p (sd+1)

getvarz, ; p (sd +g—1)

mkvec g

jump B

A: codeyep 0

B: ==

where {zq,...,z; 1} = free(e) and p'={z— (G,i)|i=0,...,g—1}.

169

Example:

Consider ¢ =axa withp = {a— (L,0)} and sd = 1. We obtain:

1 pushloc1 0 A: | pushglob0 2 etbasic
2 mkvecl 1 eval 2 mul |
2 mkclos A 1 getbasic 1 mkbasic
—
2]um@ 1 pushglob 0 1 h Edatgl
2 eval 2~ B:

170

The construction of a closure for an expression ¢ consists of:
o Packing the bindings for the free variables into a vector;

e Creation of a C-object, which contains a reference to this vector and to the
code for the evaluation of e:
codecepsd = getvar zg p sd

getvarzy p (sd+1)

getvarz,_ p (sd +g—1)
mkvecg
mkclos A
jump B

A: codeyep 0
update

B:

where {zo,...,zg_1} =free(e) and p' = {z+— (G,i)|i=0,...,g—1}.

169

Example:

Consider e =a*a withp = {a~— (L,0)} and sd = 1, We obtain:

1 pushloc1 0 A: pushglob0 2 getbasic
; 1 eval 2 mul
1 getbasic C/ 1 prebysic
1 pushglob 0 1 &
2 eval 2 B

170

e The instruction mkclos A is analogous to the instruction mkfunval A.

o It generates a C-object, where the included code pointer+

S[SP] = new (C, A, S[SP]);

171

In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

FP ——= FP
update
g —[1 1]
PC
| cp

172

21 Optimizations I: Global Variables

Observation:

* Functional programs construct many F- and C-objects.

¢ This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expression e ...

173

In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

[(11

update

— PC
] | GP

172

21 Optimizations I: Global Variables

Observation:

¢ Functional programs construct many F- and C-objects.

o This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expressione ...

codecepsd = getvar zg p sd

getvarzy p (sd +1)

getvarzo_1 p (sd+g—1)
mkvec g
mkclos A
jump B
A: codeyep 0

update

where {zq,...,2, 1} = free(e) and p' ={z — (G,i)|i=0,...,g—1}

Idea:

O)

o [T 1

e Reuse Global Vectors, i.e. share Global Vectors! copyglob
e Profitable in the translation of let-expressions or function applications: Build
one Global Vector for the union of the free-variable sets of all let-definitions
resp. all arguments.
o Allocate (references to) global vectors with multiple uses in the stack frame - —_—
like local variables! SP++;
* Support the access to the current GP by an instruction copyglob SISP1 = GP;
175 176
Idea:
cp [V 1 cr =1
o Reuse Global Vectors, i.e. share Global Vectors! copyglob
¢ Profitable in the translation of let-expressions or function applications: Build
one Global Vector for the union of the free-variable sets of all let-definitions
resp. all arguments.
o Allocate (references to) global vectors with multiple uses in the stack frame -
like local variables! SP++;
e Support the access to the current GI by an instruction copyglob SISPT = GP;
175 176

o The optimization will cause Global Vectors to contain more components
than just references to the free the variables that occur in one expression ...

Disadvantage: Superfluous components in Global Vectors prevent the
deallocation of already useless heap objects —= Space Leaks :-(

Potential Remedy: Deletion of references at the end of their life time.

g

