Script generated by TTT

Title: Seidl: Virtual Machines (29.04.2014)
Date: Tue Apr 29 10:15:16 CEST 2014
Duration: 91:07 min

Pages: 26

The instruction enter q sets the EP to the new value. If not enough space is

available, program execution terminates.

EP —=

D enter D

EP=SP +q;
if (EP = NP)
Error (“Stack Overflow™);

90

Accordingly, we translate a function definition:

code tf(specs){V_defs ss} p =

_F enter q // initialize EP
alloc k /' allocate the local variables

code ss pg

return /f return from call
where q = max+k with
max = maximal length of the local stack
k = size of the local variables
Pr = address environment for f

// takes specs, V_defs and p into account

89

The instruction call saves the return address and sets FI’ and PC onto the

new values.

tmp = S[SP];
S[SP] = PC;
FP =5P;

PC = tmp;

Accordingly, we obtain for a call to a function with at least one parameter and

one return value:

codeg Xfl’h cooeg) p = codegey, p

codep e1 p
mark

codeg g p
cal

slide (m — 1)

where m is the size of the actual parameters.

82

k E
ﬁj move k |

for (i = k-1;i>0; i--)
S[SP+i] = S[S[SP]+i];
SP = SP+k-1;

85

The instruction return pops the current stack frame. This means it restores
the registers PC, EP and FP and returns the return value on top of the stack.

pPC PC
kP p FpP
EP return EP

g8 m

PC =S[FP]; EP = S[FP-2];
if (EP > NP) Error (“Stack Overflow”);

9.4 Access to Variables, Formal Parameters and Returning of
Values

Accesses to local variables or formal parameters are relative to the current FP.

Accordingly, we modify coder for names of variables.

For p x = (tag, j) we define

d loadcj tag=G
code, x p =
J loadrej tag = L

93

The instruction loadrcj computes the sum of FI’and j.

loadrcj

FP P

SP++;
S[SP] = FP+j;

94

As an optimization, we introduce analogously to

new instructions loadrj and storer j

loadr j = loadrcj
load
storerj = loadrcj
store
95

loadaj and storeaj the

The code for returne; corresponds to an assignment to a variable with

relative address —3.

code returne; p = codeg e p
storer -3

return

Example For function

int fac (int x) |
if (x < 0) return 1;

else return x = fac (x — 1);

we generate:

96

_fac: cntu@ loadc 1 @ leadr -3 mul
alloc 0 storer -3 loadr -3 storer -3
loadr -3 return loadc 1 return

loade 0 jumy

sub return

Il
521

where ppo:x— (L,-3) and q

mark
loadc _fac
call

slide 0

Otaeqs? =S

10 Translation of Whole Programs

Before program execution, we have:

SP = -1 FP = EP = -1 PC =0 NP = MAX
Let p=V_defs F_def ...F_def,, denoteaprogramwhere F_def, is the
definition of a function f; of which one is called main
The code for the program p consists of:
e code for the function definitions F_a‘.eﬁ;
¢ code for the allocation of global variables;

e code for the call of mai.n();

e the instruction h: ich returns control to the operating system together
with the value gt address 0.

98

Then we define:

codepl) = enter (k + 4)
alloc (k +1)
mark
loadc _main
call
slide k
halt

_fy: code F_def, p

[code F_def, p

where (0 = empty address environment;
p = global address environment;

k = size of the global variables

99

10 Translation of Whole Programs

Before program execution, we have:

SP = -1 FP = EP = -1 PC =0 NP = MAX
Let p=V_defs F_def, ... F_def,, denoteaprogram where F_def, is the
definition of a function f; of which one is called main
The code for the program p consists of:
¢ code for the function definitions F_def;;
o code for the allocation of global variables;

e code for the call of int main();

e theinstruction halt which returns control to the operating system together

with the value at address 0.

98

Then we define:

codep® = enterdj

alloc (k

mark
loadc _main
call

slide k

halt
f1: code F_def, p

[code F_def, p

where = empty address environment;

1

P = global address environment;

k = size of the global variables

99

The Translation of Functional
Programming Languages

100

11 The language PuF

We only regard a mini-language Puk (“Pure Functions”).
We do not treat, as yet:
e Side effects;

e Data structures.

101

11 The language PuF

We only regard a mini-language PuF (“Pure Functions”).
We do not treat, as yet:
e Side effects;

e Data structures.

101

@{‘tc Q—GX:

A program is an expression ¢ of the form:

e = b|X|(u1f)\(ﬂ’1U2L’ &\ C

if ¢y then e, else ¢;)

e ey .L’;;,l)

[

[

| (fun xq... x4 —e)
| (let x; =e;in ey)

[(

letrec x; =e; and...and x, = ¢, in ¢g)

An expression is therefore
e a basic value, a variable, the application of an operator, or
¢ a function-application, a function-abstraction, or
¢ alet-expression, i.e. an expression with locally defined variables, or

e a let-rec-expression, i.e. an expression with simultaneously defined local

variables.
For simplicity, we only allow int as basic type.

102

Example:

The following well-known functi mputes the factorial of a natural number:
let rec fac ‘Lwl‘uf:b if x < 1thenl

elsg x - fac (x — 1)
in fac7 /VLL%

As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in

SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their
value is needed (as in Haskell).

103

A program is an expression ¢ of the form:

e == b | x| (Ope) | (e1O02e2)
if ¢y then ¢ else ¢;)

e €g ... 13;(_1)

[(

[(

| (fun xq... x,_1 —e)
| (let X, = e in L’n)

[(

letrec x| = ¢y and...and x, = ¢, in ¢p)

An expression is therefore
e abasic value, a variable, the application of an operator, or
¢ a function-application, a function-abstraction, or
e alet-expression, i.e. an expression with locally defined variables, or

* alet-rec-expression, i.e. an expression with simultaneously defined local
variables.

For simplicity, we only allow int as basic type.

102

Example:

The following well-known function computes the factorial of a natural number:

let rec fac = funx —if x < 1thenl
elsex - fac (x—1)

in fac7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in
SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their

value is needed (as in Haskell).

103

12 Architecture of the MaMa:

We know already the following components:

S N
0 1 T [] pC
C = Code-store — contains the MaMa-program;
each cell contains one instruction;
PC = Program Counter — points to the instruction to be executed next;

104

We also need a heap H:

s [L[]
T 1
0 SP
SF = l:‘ Tag
FP
l:l Code Pointer
S = Runtime-Stack - each cell can hold a basic value or an address; e l:| Value
SP = Stack-Pointer — points to the topmost occupied cell;
as in the CMa implicitely represented; |:| Heap Pointer
FP = Frame-Pointer — points to the actual stack frame.
T CT—1 b
105 106

.. it can be thought of as an abstract data type, being capable of holding data

objects of the following form:

v

E Basic Value

Closure
cp ap gp
| F | | | | Function
v[0] v[n-1]
| v | n | | | ‘ ‘ Vector

107

