Script generated by TTT

Title:

Date:

Seidl: Virtual Machines (13.05.2014)

Tue May 13 10:15:09 CEST 2014

For CBN, we obtain:

codeyepsd = allocn // allocates local variables
coder €1 p' (sd +n)

rewrite n

codec e, o' (sd + 1)

rewrite 1
. . . . codey ¢p o' (sd + 1)
Duration: 92:17 min dey eo f' (sd +n) _
slide n // deallocates local variables
Pages: 37) o
where p=p@{yi— (Lsd+i)|i=1,..., n}
In the case of CBV, we also use codey for the expressions ey, .. ., ¢.
Warning:
Recursive definitions of basic values are undefined with CBV!!!
159
Examplc: The instructiof serves # cells on the stack and initialises them with

Consider the expression

e = let rec _f:lfunx iy — ify < 1 then x else_f(x*y)(y—l)lin f1

for p = () and sd = 0. We obtain (for CBV):

) alloc 1

1 pushloc

0 A 4 loadc 1 N
0 0 5 basiE/

2 mkvec 1 1 return 2 | 5 | pushloc 4 |
2 mkfunval A 2 B: rewrite 1 6 La ly
2 jumpB 1 mark C 2 C: slidel

160

1 dummy nodes:

allocn

| |

for (i=1; i<=n; i++)
S[SP+i] = new (C,-1,-1);
SP =SP +n;

16l

The instruction rewriten overwrites the contents of the heap cell pointed to
by the reference at S[SP-n]:

= [x |
rewrite n

n

H[S[SP-n]] = H[S[SP]];
SP=SP-1;

e The reference S[SP -n] remains unchanged!

e Only its contents is changed!

Q—%M

N

20 Closures and their Evaluation

o Closures are needed for the implementation of CBN and for functional

paramaters.

o Before the value of a variable is accessed (with CBN), this value must be
available.

e Otherwise, a stack frame must be created to determine this value.

e This task is performed by the instruction eval.

S

162 163
eval can be decomposed into small actions:
eval = if (H[S[SP]]=(C,_, _)){
mark0; // allocation of the stack frame 17
. mark(
pushloc 3; // copying of the reference
/ apply(; // corresponds to apply

}

e A closure can be understood as a parameterless function. Thus, there is no
need for an ap-component.

e Evaluation of the closure thus means evaluation of an application of this
function to () arguments.
e Inconstrastto mark A , mark0 dumps the current PC.

e The difference between apply and apply0 is that no argument vector
is put on the stack.

t

~
@]

T
.

7

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = PC;
FP=SP =SP +3;

165

-

eval can be decomposed into small actions:

eval = if (H[S[SP]]=(C,_, _)){

mark(; // allocation of the stack frame
pushloc 3; // copying of the reference
apply0; // corresponds to apply

A closure can be understood as a parameterless function. Thus, there is no

need for an ap-component.

Evaluation of the closure thus means evaluation of an application of this
function to 0 arguments.

o gp

c[42

(JI)

pe [

cp gp

[c[42] > v

(.I’
PC

apply0

h =S|SP]; SP--;
GP = h—gp; PC = h—cp;

e In constrastto mark A, mark0 dumps the current PC. We thus obtain for the instruction eval:
e The difference between apply and apply0 is that no argument vector
is put on the stack.
164 166
p Ep
i SEs [l =
mark0 apply0

|
e I v J cp [~ 1]
PC | rC

S[SP+1] =
S[SP+2] =
S[SP+3] =
FP=SP=SP +3;

165

(Jl‘

bC m

We thus obtain for the instruction

or [—
PC

h =5[SP]; SP--;
GP = h—gp; PC = h—cp;

eval:

17
P gp 3
—[Cc[42] F—=[V][[| mark0 apply0
— GP | 3 |
rp — _ FP L -
] P PC
17 17
3 cp EP 3 cp gp
= Cl42 VI] pushloc 3 [C[42] F—=v[[|
— GP i GP
167 168
The construction of a closure for an expression ¢ consists of:
* Packing the bindings for the free variables into a vector;
17
T e Creation of a C-object, which contains a reference to this vector and to the
3 cp gp code for the evaluation of e:
[Cl42] F—[V[|] apply0 codecepsd = getvar zg psd
getvar z; p (sd +1)
— Gp
b}

FpP

P gp

c[92] (V]]

Gp []
L=,

PC

where {zp,...,z; 1} = free(e)

getvarz; 1 p (sd+g—1)
mkvec g
mkelos A
jump B
A: codeyep 0

B:

and p' = {z;— (G,i)]|i=0,...

g1}

Example:

Consider e =a*a withp= {a+ (L,0)} and sd = 1. We obtain:

1 pushloc1 0 A pushglob0 2 getbasic
2 mkvecl 1 eval 2 mul
2 mkclos A 1 getbasic 1 mkbasic
2 jumpB 1 pushglob 0 1 update
2 eval 2 B
170

Example:

Consider e =a*a withp= {a++ (L,0)} and sd = 1. We obtain:

1 pushloc1
mkvec 1

mkclos A

[RS T S T S

jump B

0 A pushglob0 2 getbasic
1 eval 2 mul
1 getbasic 1 mkbasic
1 pushglob 0 1 update
2 eval 2 B

170

e The instruction mkclos A is analogous to the instrucion mkfunval A.

e It generates a C-object, where the included code pointeris A.

mkclos A
[]

S[SP] = new (C, A, S[SP]);

In fact, the instruction

update is the combination of the two actions:

popenv

rewrite 1

[t overwrites the closure with the computed value.

—

Fp ——{"32
By
19

EP
update

[T] —{ 1]

pC
GP

In fact, the instruction update is the combination of the two actions:

popenv
rewrite 1

It overwrites the closure with the computed value.

21 Optimizations I: Global Variables

Observation:
[{11
FP —=| 42 FpP
update
19
—=[c[[| o Functional programs construct many F- and C-objects.
] e This requires the inclusion of (the bindings of) all global variables.
Recall, e.g., the construction of a closure for an expression ¢ ...
172 173
codecepsd = getvar zo psd

getvar zy p (sd + 1)

getvarzg 1 p (sd+g—1)
mkvecg
mkclos A
jump B
A: codeyep 0
update

where Z0,..-,Zg1} = free(e) and o ={zi— (G i) |i=0,...,g—1}.

174

Idea:

o Reuse Global Vectors, i.e. share Global Vectors!

* Profitable in the translation of let-expressions or function applications: Build
one Global Vector for the union of the free-variable sets of all let-definitions

resp. all arguments.

* Allocate (references to) global vectors with multiple uses in the stack frame
like local variables!

* Support the access to the current GP by an instruction copyglob

e The optimization will cause Global Vectors to contain more components

than just references to the free the variables that occur in one expression ...

Superfluous components in Global Vectors prevent the

Disadvantage:
Space Leaks :-(

deallocation of already useless heap objects

Potential Remedy: Deletion of references at the end of their life time.

S

22 Optimizations II: Closures

In some cases, the construction of closures can be avoided, namely for
e Basic values,
e Variables,

o Functions.

Basic Values:
The construction of a closure for the value is at least as expensive as the

construction of the B-object itself!

Therefore:
codec bpsd = codeybpsd = loadch
mkbasic
This replaces:
mkvec 0 jump B mkbasic B:
mkclos A A: loadc b update

Variables:
Variables are either bound to values or to C-objects. Constructing another

closure is therefore superfluous. Therefore:

codec x psd = getvarxpsd
This replaces:
getvar x psd mkclos A A: pushglob 0 update
mkvec 1 jump B eval B:
180

Q f‘j a4 (), & P

0 alloc2 3 rewrite2 3 mkbasic 2 pushloc 1
2 pushloc0 2 loadc?7 3 rewrite 1 3 eval
Example: 3 slide?
Consider ¢=letreca =band b =7 in a.
codey e 0 produces:
0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1
) alloc 2
2 pushloc 0 2 loade 7 3 rewrite 1 3 eval
3 slide 2
The execution of this instruction sequence should deliver the basic value 7 ...
181 182
0 alloc2 3 rewrite2 3 mkbasic 2 pushloc1 0 alloc2 3 rewrjte2 3 mkbasic 2 pushloc1
-
2 pushloc 0 2 loadc7 3 rewrite 1 3 eval 2 pushloc 0 \LC(E %(Ed&? CLJ 3\ rewTite 1 L\Q-”r eval
3 slide 2 3 slide 2

Segmentation Fault !!

190

pushloc 1

0 alloc2 3 rewrite 2 3 mkbasic 2 pushlocl

2 pushloc0 2 loadc7 3 rewrite 1 3 eval
3 slide2 - .
Functions:
Functions are values, which are not evaluated further. Instead of generating
code that constructs a closure for an F-object, we generate code that constructs
the F-object directly.
alloc 2
Therefore:
code- (funxy...x_y —e)psd = codey (funxy...x_ —e) psd
182 192
L 23 The Translation of a Program Expression
Functions:

Functions are values, which are not evaluated further. Instead of generating
code that constructs a closure for an F-object, we generate code that constructs

the F-object directly.

Therefore:

codec (funxy...x, , »¢)psd = codey (funxy...xp ; —+¢)psd

192

Execution of a program e starts with
PC=0 SP=FP =GP = -1
The expression ¢ must not contain free variables.

The value of e should be determined and then a halt instruction should be

executed.

codee = codeyeld0

halt

193

Remarks:

e The code schemata as defined so far produce Spaghetti code.

e Reason: Code for function bodies and closures placed directly behind the

instructions mkfunval resp. mkclos with a jump over this code.

e Alternative: Place this code somewhere else, e.g. following the

halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and

mkclos.

Disadvantage: The code schemata are more complex as they would have to

accumulate the code pieces in a Code-Dump.
E——9
Solution:

Disentangle the Spaghetti code in a subsequent optimization phase :-)

Example:

leta=17inlet f =funb —>a+bi

Disentanglement of the jumps produces:

0 loadcl7
1 mkbasic
1 pushloc 0
2 mkvec 1

2 mkfunval A

®

—
mark B

loadc 42
mkbasic
pushloc 4

eval

apply

195

slide 2
halt

targ 1

pushglob 0
eval

getbasic

[R* B oS T o]

pushloc 1
eval
getbasic
add

mkbasic

return 1

