Script generated by TTT

Title: Petter: Virtual Machines (29.04.2019)
Date: Mon Apr 29 10:16:17 CEST 2019
Duration: 94:42 min

Pages: 12

Principle of Compilation

Virt

Helmut Seidl, Michael Petter

Hal IVlaching

LS

Mitinchen

Summer 2019

Structure of a compiler:

Input Code Output

Two Phases (at two different Times):

e Translation of the source program into a machine program (at compile time);

e Execution of the machine program on input data (at run time).

Source program

Y

Frontend

Internal representation
(Syntax tree)

Optimizations

Internal representation

Code

generation

Program for
target machine

Subtasks in code generation:

Goal is a good exploitation of the hardware resources:

1. Instruction Selection: Selection of efficient, semantically equivalent instruction

sequences;
2. Register-allocation: Best use of the available processor registers
3. Instruction Scheduling: Reordering of the instruction stream to exploit

intra-processor parallelism

For several reasons, e.g., modularization of code generation and portability, code

generation may be split into two phases:

Virtual machine

o idealized architecture,

»lsimple code generation,

e easily implemented on real hardware.

Advantages:

e Porting the compiler to a new target architecture is simpler,
e Modularization makes the compiler easier to modify,

e Translation of program constructs is separated from the exploitation of

architectural features.

Intermediate Code abstract machine
representation generation code

)
abstract machine Compiler concrete machine
code code
alternatively:
Input Interpreter Output

Execution of Programs

e The machine loads the instruction in C[PC] into a Instruction-Register IR and

executes it

e PC is incremented by 1 before the execution of the instruction
hile (true) {

IR = C[PC]; PC4+;

execute (IR);

e The execution of the instruction may overwrite the PC (jumps).

e The Main Cycle of the machine will be halted by executing the instruction
halt , which returns control to the environment, e.g. the operating system
—

e More instructions will be introduced by demand

15

2 Simple expressions and assignments

Problem: evaluate the expression

This means: generate an instruction sequence, which

e determines the value of tl

he expression and

e pushes it on top of the stack...

Idea

e first compute the values of the subexpressions,

e save these values on top

e then apply the operator.

| 8]

of the stack,

mul

SP--;
S[SP] = S[SP] * S[SP+1];

(1+7)%3 |1

mul expects two operands on top of the stack, consumes both, and pushes their

product onto the stack.

... the other binary arithmetic and logical instructions,
and xor, work analogously, as do the comparison instructions eq, neq, le, leq, gr

and geq.

add, sub, div, mod, and, or

The general principle
e instructions expect their arguments on top of the stack,
e execution of an instruction consumes its operands,

e results, if any, are stored on top of the stack.

loadc q —

SP++;
S[SPl =«;

Instruction loadc q needs no operand on top of the stack, pushes the constant g

onto the stack.

The content of register SP is only implicitly represented, namely, through the height
of the stack.

17

| 8]

mul

SP--;
S[SP] = S[SP] * S[SP+1];

mul expects two operands on top of the stack, consumes both, and pushes their
product onto the stack.

... the other binary arithmetic and logical instructions, add, sub, div, mod, and, or
and xor, work analogously, as do the comparison instructions eq, neq, le, leq, gr
and geq.

18

We define:

codeg (61 +e2) p = coderer p
codeg ey p
add
... analogously for the other binaty operators
coder (—e) p = codeg e p
neg

~analogously-for-the-other unary operators
codeg q p = loadc q

code. x p —ioadc (p x)

23

