Script generated by TTT

Title: Petter: Virtual Machines (18.06.2019)
Date: Tue Jun 18 10:18:27 CEST 2019
Duration: 86:55 min

Pages: 8

Discussion

e We adopt the C++ perspective on classes and objects.

e We extend our implementation n particular ...

e Classes are considered as extensions of structs. They may comprise:

= | attributes, i.e., data fields; |

= constructors;

= | member functions which either ar# virtual,l i.e., are called depending on

of an object.

the run-time type or non-virtual, i.e., called according to thtype

= | static member functions which are like ordinary functions. |

e [We ignore visibility restrictions such as public, protected or private but
simply assume general visibility.

e | We ignore multiple inheritance.

372

39 Garbage Collection

e Both during execution of a MaMa- as well as a WiM-programs, it may happen
that some objects can no longer be reached through references.

e Obviously, they cannot affect the further program execution. Therefore, these
objects are called garbage.

e Their storage space should be freed and reused for the creation of other objects.

Caveat

The WiM provides some kind of heap de-allocation. This, however, only frees the
storage of failed alternatives !l

347

For every class C we assume that we are given an address environment | pc |

pc maps every identifier | x |visible inside C to its decorated relative address
a | We distingish:

global variable (G, a)
local variable (L,a)
attribute (A, a)
virtual function (V,b)
non-virtual function | (N,a)
static function (S,a)

For virtual functions x , we do not store the starting address of the code — but the
relative address b of the field of x inside the VFT.

377

Discussion

41 Calling Member Functions

e Besides storing the current object pointer inside the stack frame, we could have
additionally used a| specific register COP.

e This register must updated before calls to non-static member functions and

Static member functions are considered as ordinary functions.
restored after the call.

For non-static member functions, we distinguish two forms of calls:

(1) directly: flea, ... en)

(2) relative to an object: | e1.f (e2,...,€4)

e We have refrained from doing so since

— Only some functions are member functions.

— We want to reuse as much of the C-machine as possible.

Idea

e The case (1) is considered as an abbreviation of
e The object|is passed to f as an|implicit first argument.

e If is non-virtual, proceed as with an ordinary call of a function.

o If is virtual

insert an indirect call via the VFT. |

380 381

a table with static address vc.

Then:

For every class C we assume that we are given an address environment pc .

pc maps every identifier x visible inside C to its decorated relative address

(e ’—| Ve a . We distingish:
] L
"] virtual C " global variable (G, a)
E local variable (L,a)
attribute (A, a)
= = virtual function (V,b)
non-virtual function (N,a)
S[S[FP-3]] = vc static function (S,a)

For virtual functions x , we do not store the starting address of the code — but the
relative address b of the field of x inside the VFT.

393 377

The instruction

loads j

|

loads relative to the stack pointer:

[oads]

[ZI

|
2
[

S[SP+1] = S[SP—j];
SP++;

384

