Script generated by TTT

Title: Sturm: Visual Navigation (19.06.2012)

Date: Tue Jun 19 10:16:39 CEST 2012

Duration: 86:43 min

Pages: 85

Visual Navigation for Flying Robots

Bundle Adjustment and Stereo Correspondence

Dr. Jürgen Sturm

Project Proposal Presentations

- This Thursday
- Don't forget to put title, team name, team members on first slide
- Pitch has to fit in 5 minutes (+5 minutes discussion)
- 9 x (5+5) = 90 minutes
- Recommendation: use 3-5 slides

Agenda for Today

- Map optimization
 - Graph SLAM
 - Bundle adjustment
- Depth reconstruction
 - Laser triangulation
 - Structured light (Kinect)
 - Stereo cameras

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

E

Remember: 3D Transformations

From twist coordinates to twist

$$\hat{\boldsymbol{\xi}} = \begin{pmatrix} 0 & -\omega_z & \omega_y & v_x \\ \omega_z & 0 & -\omega_x & v_y \\ -\omega_y & \omega_x & 0 & v_z \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \text{se}(3)$$

Exponential map between se(3) and SE(3)

$$M = \exp \hat{\boldsymbol{\xi}}$$
 $\hat{\boldsymbol{\xi}} = \log M$
 $M = \exp[\boldsymbol{\xi}]^{\wedge}$ $\boldsymbol{\xi} = [\log M]^{\vee}$

Remember: 3D Transformations

Representation as a homogeneous matrix

$$M = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix} \in \mathrm{SE}(3) \subset \mathbb{R}^{4 \times 4}$$
 Pro: easy to concatenate and invert Con: not minimal

Representation as a twist coordinates

$$\pmb{\xi} = (v_x \ v_y \ v_z \ \omega_x \ \omega_y \ \omega_z)^{ op} \in \mathbf{R}^6$$
 Con: need to convert to matrix for concational contents of the matrix for concations of the contents of the conte

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Remember: Rodrigues' formula

Given: Twist coordinates

$$\boldsymbol{\xi} = (\boldsymbol{\omega}^{\top}, \boldsymbol{v}^{\top})^{\top} = (\omega_x, \omega_y, \omega_z, v_x, v_y, v_z)^{\top}$$
$$= (t\bar{\boldsymbol{\omega}}^{\top}, \boldsymbol{v}^{\top})^{\top} \text{ with } \|\bar{\boldsymbol{\omega}}\| = 1, t = \|\boldsymbol{\omega}\|$$

Return: Homogeneous transformation

$$R = I + [\bar{\boldsymbol{\omega}}]_{\times} \sin(t) + [\bar{\boldsymbol{\omega}}]_{\times}^{2} (1 - \cos t)$$

$$\mathbf{t} = (I - R)[\bar{\boldsymbol{\omega}}]_{\times} \boldsymbol{v} + \bar{\boldsymbol{\omega}} \bar{\boldsymbol{\omega}}^{\top} \boldsymbol{v} t$$

$$M = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

alternative notation:

Notation

 Camera poses in a minimal representation (e.g., twists)

$$\mathbf{c}_1,\mathbf{c}_2,\ldots,\mathbf{c}_n$$

... as transformation matrices

$$M_1, M_2, \ldots, M_n$$

... as rotation matrices and translation vectors

$$(R_1,\mathbf{t}_1),(R_2,\mathbf{t}_2),\ldots,(R_n,\mathbf{t}_n)$$

Visual Navigation for Flying Robots

7

Dr. Jürgen Sturm, Computer Vision Group, TUM

Incremental Motion Estimation

 Idea: Estimate camera motion from frame to frame

Incremental Motion Estimation

Idea: Estimate camera motion from frame to frame

Visual Navigation for Flying Robots

8

Dr. Jürgen Sturm, Computer Vision Group, TUM

Loop Closures

- Idea: Estimate camera motion from frame to frame
- Problem:
 - Estimates are inherently noisy
 - Error accumulates over time → drift

Incremental Motion Estimation

• Idea: Estimate camera motion from frame to frame

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Graph SLAM

[Olson et al., 2006]

- Use a graph to represent the model
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-based SLAM: Build the graph and find the robot poses that minimize the error introduced by the constraints

Loop Closures

• **Solution**: Use loop-closures to minimize the drift / minimize the error over all constraints

Example: Graph SLAM on Intel Dataset

Example: Graph SLAM on Intel Dataset

Problem Definition

- Given: Set of observations $\mathbf{z}_{ij} \in \mathbb{R}^6$
- Wanted: Set of camera poses $c_1, \ldots, c_n \in \mathbb{R}^6$
 - lacktriangle State vector $\mathbf{x} = (\mathbf{c}_1^{ op}, \dots, \mathbf{c}_n^{ op})^{ op} \in \mathbb{R}^{6n}$

Graph SLAM Architecture

- Interleaving process of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space

18

Dr. Jürgen Sturm, Computer Vision Group, TUM

Map Error

- lacktriangle Real observation lacktriangle lacktriangle z $_{ij}$
- lacktriangle Expected observation $ar{\mathbf{z}}_{ij} = \mathbf{c}_j \ominus \mathbf{c}_i$
- Difference between observation and expectation

$$\mathbf{e}_{ij} = \mathbf{z}_{ij} \ominus \mathbf{\bar{z}}_{ij}$$

 Given the correct map, this difference is the result of sensor noise...

Map Error

- Real observation
- lacktriangle Expected observation $ar{\mathbf{z}}_{ij} = \mathbf{c}_j \ominus \mathbf{c}_i$
- Difference between observation and expectation

$$\mathbf{e}_{ij} = \mathbf{z}_{ij} \ominus \mathbf{\bar{z}}_{ij}$$

 Given the correct map, this difference is the result of sensor noise...

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Incremental Motion Estimation

Idea: Estimate camera motion from frame to frame

Example: Graph SLAM on Intel Dataset

Error Function

Map error (over all observations)

$$f(\mathbf{x}) = \sum_{ij} f_{ij}(\mathbf{x}) = \sum_{ij} \mathbf{e}_{ij}(\mathbf{x})^{\top} \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

Minimize this error by optimizing the camera poses

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}(\mathbf{x})^{\top} \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

How can we solve this optimization problem?

Non-Linear Minimization

Gauss-Newton Method:

- 1. Linearize the error function
- 2. Compute its derivative
- 3. Set the derivative to zero
- 4. Solve the linear system
- 5. Iterate this procedure until convergence

Visual Navigation for Flying Robots

23

Dr. Jürgen Sturm, Computer Vision Group, TUM

Non-Linear Minimization

Gauss-Newton Method:

- 1. Linearize the error function
- 2. Compute its derivative
- 3. Set the derivative to zero
- 4. Solve the linear system
- 5. Iterate this procedure until convergence

23

Non-Linear Minimization

Gauss-Newton Method:

- 1. Linearize the error function
- 2. Compute its derivative
- 3. Set the derivative to zero
- 4. Solve the linear system
- 5. Iterate this procedure until convergence

Visual Navigation for Flying Robots

2

Dr. Jürgen Sturm, Computer Vision Group, TUM

Step 1: Linearize the Error Function

Error function

$$f(\mathbf{x}) = \sum_{ij} f_{ij}(\mathbf{x}) = \sum_{ij} \mathbf{e}_{ij}(\mathbf{x})^{\top} \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

Evaluate the error function around the initial guess

$$f(\mathbf{x} + \Delta \mathbf{x}) = \sum_{ij} \mathbf{e}_{ij} (\mathbf{x} + \Delta \mathbf{x})^\top \Sigma_{ij}^{-1} \underline{\mathbf{e}_{ij} (\mathbf{x} + \Delta \mathbf{x})}$$
 Let's derive this term first...

Linearize the Error Function

 Approximate the error function around an initial guess x using Taylor expansion

$$\mathbf{e}_{ij}(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{e}_{ij}(\mathbf{x}) + J_{ij}\Delta \mathbf{x}$$

with

$$J_{ij}(\mathbf{x}) = \begin{pmatrix} \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_1} & \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_2} & \cdots & \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_n} \end{pmatrix}$$

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Illustration of the Structure

$$\mathbf{b}_{ij}^{ op} = \mathbf{e}_{ij}^{ op} \Sigma_{ij}^{-1} J_{ij}$$
 Non-zero only at \mathbf{c}_i and \mathbf{c}_j

Linearizing the Error Function

Linearize
$$f(\mathbf{x}) = \sum_{ij} \mathbf{e}_{ij}(\mathbf{x})^T \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

$$\simeq \mathbf{c} + 2\mathbf{b}^\top \Delta \mathbf{x} + \Delta \mathbf{x}^\top H \Delta \mathbf{x}$$

with
$$\mathbf{b}^{\top} = \sum_{ij} \mathbf{e}_{ij}^{\top} \Sigma_{ij}^{-1} J_{ij}$$

$$H = \sum_{ij} J_{ij}^{\top} \Sigma_{ij}^{-1} J_{ij}$$
• What is the structure of \mathbf{b}^{\top} and H ?

• What is the structure of \mathbf{b}^{\top} and H? (Remember: all J_{ij} 's are sparse)

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Illustration of the Structure

(Linear) Least Squares Minimization

1. Linearize error function

$$f(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{c} + 2\mathbf{b}^{\mathsf{T}} \Delta \mathbf{x} + \Delta \mathbf{x}^{\mathsf{T}} H \Delta \mathbf{x}$$

2. Compute the derivative

$$\frac{\mathrm{d}f(\mathbf{x} + \Delta\mathbf{x})}{\mathrm{d}\Delta\mathbf{x}} = 2\mathbf{b} + 2H\Delta\mathbf{x}$$

3. Set derivative to zero

$$H\Delta \mathbf{x} = -\mathbf{b}$$

4. Solve this linear system of equations, e.g.,

$$\Delta \mathbf{x} = -H^{-1}\mathbf{b}$$

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Gauss-Newton Method

Problem: $f(\mathbf{x})$ is non-linear!

Algorithm: Repeat until convergence

1. Compute the terms of the linear system

$$\mathbf{b}^{\top} = \sum_{ij} \mathbf{e}_{ij}^{T} \Sigma_{ij}^{-1} J_{ij} \qquad H = \sum_{ij} J_{ij}^{\top} \Sigma_{ij}^{-1} J_{ij}$$

2. Solve the linear system to get new increment

$$H\Delta \mathbf{x} = -\mathbf{b}$$

3. Update previous estimate

Gauss-Newton Method

Problem: $f(\mathbf{x})$ is non-linear!

Algorithm: Repeat until convergence

1. Compute the terms of the linear system

$$\mathbf{b}^{\top} = \sum_{ij} \mathbf{e}_{ij}^{T} \Sigma_{ij}^{-1} J_{ij} \qquad H = \sum_{ij} J_{ij}^{\top} \Sigma_{ij}^{-1} J_{ij}$$

2. Solve the linear system to get new increment

$$H\Delta \mathbf{x} = -\mathbf{b}$$

3. Update previous estimate

$$\mathbf{x} \leftarrow \mathbf{x} + \Delta \mathbf{x}$$
 Dr. Jürgen Sturm, Computer Vision Group, TUM

Sparsity of the Hessian

- The Hessian is
 - positive semi-definit
 - symmetric
 - sparse
- This allows the use of efficient solvers
 - Sparse Cholesky decomposition (~100M matrix elements)
 - Preconditioned conjugate gradients (~1.000 matrix elements)
 - ... many others

Visual Navigation for Flying Robots

Sparsity of the Hessian

- The Hessian is
 - positive semi-definit
 - symmetric
 - sparse
- This allows the use of efficient solvers
 - Sparse Cholesky decomposition (~100M matrix elements)
 - Preconditioned conjugate gradients (~1.000 matrix elements)
 - ... many others

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Example in 1D

- Error $e_{12} = z_{12} - \bar{z}_{12}$ $= z_{12} - (c_2 - c_1) = 1 - (0 - 0) = 1$
- Jacobian $J_{12}=\begin{pmatrix} \frac{\partial e_{12}}{\partial c_1} & \frac{\partial e_{12}}{\partial c_2} \end{pmatrix}=\begin{pmatrix} 1 & -1 \end{pmatrix}$
- Build linear system of equations

$$b^{\top} = e_{12}^{\top} \Sigma^{-1} e_{12} = \begin{pmatrix} 2 & -2 \end{pmatrix}$$
$$H = J_{12}^{\top} \Sigma^{-1} J_{12} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

Solve the system

$$\Delta x = -H^{-1}b$$
 but det $H = 0$???

What Went Wrong?

- The constraint only specifies a relative constraint between two nodes
- Any poses for the nodes would be fine as long as their relative coordinates fit
- One node needs to be fixed
 - Option 1: Remove one row/column corresponding to the fixed pose
 - lacksquare Option 2: Add to H, \mathbf{b} a linear constraint $1 \cdot \Delta c_1 = 0$
 - Option 3: Add the identity matrix to H (Levenberg-Marguardt)

Fixing One Node

- The constraint only specifies a relative constraint between two nodes
- Any poses for the nodes would be fine as long as their relative coordinates fit
- One node needs to be fixed (here: Option 2)

$$H = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \text{additional const} \\ \text{that sets } \Delta c_1 = 1 \\ \Delta x = -H^{-1}b \\ \Delta x = \begin{pmatrix} 0 & 1 \end{pmatrix}^\top$$

Visual Navigation for Flying Robots

12

Dr. Jürgen Sturm, Computer Vision Group, TUM

Non-Linear Minimization

- One of the state-of-the-art solution to compute the maximum likelihood estimate
- Various open-source implementations available
 - g2o [Kuemmerle et al., 2011]
 - sba [Lourakis and Argyros, 2009]
 - iSAM [Kaess et al., 2008]
- Other extensions:
 - Robust error functions
 - Alternative parameterizations

Levenberg-Marquardt Algorithm

Idea: Add a damping factor

$$(H + \lambda I)\Delta \mathbf{x} = -\mathbf{b}$$
$$(J^{\mathsf{T}}J + \lambda I)\Delta \mathbf{x} = -J^{\mathsf{T}}\mathbf{e}$$

- What is the effect of this damping factor?
 - Small λ ?
 - Large λ ?

B

Visual Navigation for Flying Robots

43

Dr. Jürgen Sturm, Computer Vision Group, TUM

Bundle Adjustment

Graph SLAM: Optimize (only) the camera poses

$$\mathbf{x} = (\mathbf{c}_1^{\top}, \dots, \mathbf{c}_n^{\top})^{\top} \in \mathbb{R}^{6n}$$

 Bundle Adjustment: Optimize both 6DOF camera poses and 3D (feature) points

$$\mathbf{x} = (\mathbf{c}_1^\top, \dots, \mathbf{c}_n^\top, \mathbf{p}_1^\top, \dots, \mathbf{p}_m^\top)^\top \in \mathbb{R}^{6n+3m}$$

• Typically $m \gg n$ (why?)

Error Function

- Camera pose $\mathbf{c}_i \in \mathbb{R}^6$
- Feature point $\mathbf{p}_i \in \mathbb{R}^3$
- Observed feature location $\mathbf{z}_{ij} \in \mathbb{R}^2$
- Expected feature location

$$g(\mathbf{c}_i, \mathbf{p}_j) = R_i^{\top}(\mathbf{t}_i - \mathbf{p}_j)$$
$$h(\mathbf{c}_i, \mathbf{p}_j) = g_{x,y}(\mathbf{c}_i, \mathbf{p}_j) / g_z(\mathbf{c}_i, \mathbf{p}_j)$$

R

Visual Navigation for Flying Robots

47

Dr. Jürgen Sturm, Computer Vision Group, TUM

Illustration of the Structure

- Each camera sees several points
- Each point is seen by several cameras
- Cameras are independent of each other (given the points), same for the points

Error Function

 Difference between observation and expectation

$$\mathbf{e}_{ij} = \mathbf{z}_{ij} - h(\mathbf{c}_i, \mathbf{p}_j)$$

Error function

$$f(\mathbf{c}, \mathbf{p}) = \sum_{ij} \mathbf{e}_{ij}^{\top} \Sigma^{-1} \mathbf{e}_{ij}$$

• Covariance Σ is often chosen isotropic and on the order of one pixel

Visual Navigation for Flying Robots

49

Dr. Jürgen Sturm, Computer Vision Group, TUM

Primary Structure

Characteristic structure

$$\begin{pmatrix} J_{\mathbf{c}}^{\top} J_{\mathbf{c}} & J_{\mathbf{c}}^{\top} J_{\mathbf{p}} \\ J_{\mathbf{p}}^{\top} J_{\mathbf{c}} & J_{\mathbf{p}}^{\top} J_{\mathbf{p}} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{c} \\ \Delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$

$$\begin{pmatrix} H_{\mathbf{c}\mathbf{c}} & H_{\mathbf{c}\mathbf{p}} \\ H_{\mathbf{p}\mathbf{c}} & H_{\mathbf{p}\mathbf{p}} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{c} \\ \Delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$

R

Primary Structure

• Insight: H_{cc} and H_{pp} are block-diagonal (because each constraint depends only on one camera and one point)

$$\begin{pmatrix} \Delta \mathbf{c} \\ \Delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$

 This can be efficiently solved using the Schur Complement

Visual Navigation for Flying Robots

51 Dr. Jürgen Sturm, Computer Vision Group, TUM

Schur Complement

Given: Linear system

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

If D is invertible, then (using Gauss elimination)

$$(A - BD^{-1}C)\mathbf{x} = \mathbf{a} - BD^{-1}\mathbf{b}$$
$$\mathbf{y} = D^{-1}(\mathbf{b} - C\mathbf{x})$$

■ Reduced complexity, i.e., invert one $p \times p$ and $p \times p$ matrix instead of one $(p+q) \times (p + q)$ matrix

Schur Complement

Given: Linear system

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

If D is invertible, then (using Gauss elimination)

$$(A - BD^{-1}C)\mathbf{x} = \mathbf{a} - BD^{-1}\mathbf{b}$$
$$\mathbf{y} = D^{-1}(\mathbf{b} - C\mathbf{x})$$

■ Reduced complexity, i.e., invert one $p \times p$ and $p \times p$ matrix instead of one $(p+q) \times (p+q)$ matrix

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Example Hessian (Lourakis and Argyros, 2009)

From Sparse Maps to Dense Maps

- So far, we only looked at sparse 3D maps
 - We know where the (sparse) cameras are
 - We know where the (sparse) 3D feature points are
- How can we turn these models into volumetric 3D models?

Dr. Jürgen Sturm, Computer Vision Group, TUM

Human Stereo Vision

From Sparse Maps to Dense Maps

- Today: Estimation of depth dense images (stereo cameras, laser triangulation, structured light/Kinect)
- Next week: Dense map representations and data fusion

Stereo Correspondence Constraints

Given a point in the left image, where can the corresponding point be in the right image?

Reminder: Epipolar Geometry

- A point in one image "generates" a line in another image (called the epipolar line)
- Epipolar constraint $\hat{\mathbf{x}}_2^{\mathsf{T}} E \hat{\mathbf{x}}_1 = 0$

Example: Converging Cameras

Epipolar Constraint

 This is useful because it reduces the correspondence problem to a 1D search along an epipolar line

Visual Navigation for Flying Robots

6

Dr. Jürgen Sturm, Computer Vision Group, TUM

Example: Parallel Cameras

63

Rectification

- In practice, it is convenient if the image scanlines (rows) are the epipolar lines
- → Reproject image planes onto a common plane parallel to the baseline (two 3x3 homographies)
- Afterwards pixel motion is horizontal

B

Dr. Jürgen Sturm, Computer Vision Group, TUM

Visual Navigation for Flying Robots

Basic Stereo Algorithm

- For each pixel in the left image
 - Compare with every pixel on the same epipolar line in the right image
 - Pick pixel with minimum matching cost (noisy)
 - Better: match small blocks/patches (SSD, SAD, NCC)

right image

Visual Navigation for Flying Robots 66 Dr. Jürgen Sturm, Computer Vision Group, TUM

Example: Rectification

Block Matching Algorithm

Input: Two images and camera calibrations

Output: Disparity (or depth) image

Algorithm:

- Geometry correction (undistortion and rectification)
- 2. Matching cost computation along search window

67

- 3. Extrema extraction (at sub-pixel accuracy)
- 4. Post-filtering (clean up noise)

B

Visual Navigation for Flying Robots

Example

Input

Output

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Problems with Stereo

- Block matching typically fails in regions with low texture
 - Global optimization/regularization (speciality of our research group)
 - Additional texture projection

What is the Influence of the Block Size?

- Common choices are 5x5...11x11
- Smaller neighborhood: more details
- Larger neighborhood: less noise
- Suppress pixels with low confidence (e.g., check ratio best match vs. 2nd best match)

Visual Navigation for Flying Robots

20x20

Dr. Jürgen Sturm, Computer Vision Group, TUM

Example: PR2 Robot with Projected Texture Stereo

69

71

Laser Triangulation

Idea:

- Well-defined light pattern (e.g., point or line) projected on scene
- Observed by a line/matrix camera or a position-sensitive device (PSD)
- Simple triangulation to compute distance

d

Visual Navigation for Flying Robots

72

Dr. Jürgen Sturm, Computer Vision Group, TUM

Example: Neato XV-11

- K. Konolige, "A low-cost laser distance sensor", ICRA 2008
- Specs: 360deg, 10Hz, 30 USD

Laser Triangulation

Function principle

• Depth triangulation $z = f \frac{L}{d}$ (note: same for stereo disparities)

Visual Navigation for Flying Robots

7

Dr. Jürgen Sturm, Computer Vision Group, TUM

How Does the Data Look Like?

Laser Triangulation

- Stripe laser + 2D camera
- Often used on conveyer belts (volume sensing)
- Large baseline gives better depth resolution but more occlusions → use two cameras

Structured Light

- Multiple stripes / 2D pattern
- Data association more difficult
- Coding schemes
 - Temporal: Coded light

Dr. Jürgen Sturm, Computer Vision Group, TUM

Structured Light

- Multiple stripes / 2D pattern
- Data association more difficult

Visual Navigation for Flying Robots

77

Dr. Jürgen Sturm, Computer Vision Group, TUM

Structured Light

- Multiple stripes / 2D pattern
- Data association more difficult
- Coding schemes
 - Temporal: Coded light
 - Wavelength: Color
 - Spatial: Pattern (e.g., diffraction patterns)

Visual Navigation for Flying Robots

79

Dr. Jürgen Sturm, Computer Vision Group, TUM

Sensor Principle of Kinect

- Kinect projects a diffraction pattern (speckles) in near-infrared light
- CMOS IR camera observes the scene

Sensor Principle of Kinect

Example Data

- Kinect provides color (RGB) and depth (D) video
- This allows for novel approaches for (robot) perception

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Sensor Principle of Kinect

- Pattern is memorized at a known depth
- For each pixel in the IR image
 - Extract 9x9 template from memorized pattern
 - Correlate with current IR image over 64 pixels and search for the maximum
 - Interpolate maximum to obtain sub-pixel accuracy (1/8 pixel)
 - Calculate depth by triangulation

Technical Specs

- Infrared camera has 640x480 @ 30 Hz
 - Depth correlation runs on FPGA
 - 11-bit depth image
 - 0.8m 5m range
 - Depth sensing does not work in direct sunlight (why?)
- RGB camera has 640x480 @ 30 Hz
 - Baver color filter
- Four 16-bit microphones with DSP for beam forming @ 16kHz
- Requires 12V (for motor), weighs 500 grams
- Human pose recognition runs on Xbox CPU and uses only 10-15% processing power @30 Hz

(Paper: http://research.microsoft.com/apps/pubs/def[\ult.aspx?id=145347)

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Impact of the Kinect Sensor

- Sold >18M units, >8M in first 60 days (Guiness: "fastest selling consumer electronics device)
- Has become a "standard" sensor in robotics

History

- 2005: Developed by PrimeSense (Israel)
- 2006: Offer to Nintendo and Microsoft, both companies declined
- 2007: Alex Kidman becomes new incubation director at Microsoft, decides to explore PrimeSense device. Johnny Lee assembles a team to investigate technology and develop game concepts
- 2008: The group around Prof. Andrew Blake and Jamie Shotton (Microsoft Research) develops pose recognition
- 2009: The group around Prof. Dieter Fox (Intel Labs / Univ. of Washington) works on RGB-D mapping and RGB-D object recognition
- Nov 4, 2010: Official market launch
- Nov 10, 2010: First open-source driver available
- 2011: First programming competitions (ROS 3D, PrimeSense), First workshops (RSS, Euron)
- 2012: First special Issues (JVCI, T-SMC)

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Kinect: Applications

Open Research Questions

- How can RGB-D sensing facilitate in solving hard perception problems in robotics?
 - Interest points and feature descriptors?
 - Simultaneous localization and mapping?
 - Collision avoidance and visual navigation?
 - Object recognition and localization?
 - Human-robot interaction?
 - Semantic scene interpretation?

B

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

