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This Thugsday
Don’t forget to put title, team name, team

° Visual Navigation
for Flying Robots members on first slide

Pitch has to fit in 5 minutes (+5 minutes
discussion)

9 x (5+5) = 90 minutes
Recommendation: use 3-5 slides

Bundle Adjustment
and Stereo Correspondence

Dr. Jurgen Sturm
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Agenda for Today

" Map optimization
® Graph SLAM
® Bundle adjustment

= Depth reconstruction
= Laser triangulation
= Structured light (Kinect)
= Stereo cameras

Visual Navigation for Flying Robots

Remember: 3D Transformations

" From tstt coordinates to twist

h w 0 —-w, v
£ _ z Bl Y = se(3)
—Wy Wy 0 v,

0 0 0 0

= Exponential map between se(3) and SE(3)

-~

M =expé £ =logM

alternative notation: A{ = CXp[s]A 6 = [log j\v.ﬂv

Visual Navigation for Flying Robots
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Remember: 3D Transformations

Representation as a homogeneous matrix

Pro: easy to concatenate

T
0 1 Con: not minimal

M = (R t) - SE(3) C R4X4 and invert

= Representation as a twist coordinates

Pro: minimal
Con: need to convert

s o, , , T 6
£_ (UI ’Uy Uy Wy W‘!/ “03) € R to matrix for concat-

enation and inversion

Visual Navigation for Flying Robots 4

Remember: Rodrigues’ formula

= Given: Tgvist coordinates

£ = (wT, v )T = (Wa, Wy, w:,’z,JJ_,,'ch?-'u:)T
= (to",v")" with ||@]| = 1,1 = ||w||
= Return: Homogeneous transformation
R =1+ [@].sin(t) + [@]%(1 — cost)
t=(I - R)[®@v+ @ vt
M = ((ﬁ '{)

Visual Navigation for Flying Robots



Notation

= Cameraposesina minimal representation
(e.g., twists)
Ci,C2,...,Cp

= . astransformation matrices

= . asrotation matrices and translation vectors
(R'lv t]): (R27 t’2)7 veey (Rn~ t-n)

Incremental Motion Estimation

» |dea: Est&mate camera motion from frame to
frame

Incremental Motion Estimation

» |dea: Estémate camera motion from frame to
frame

Loop Closures

» |dea: Estémate camera motion from frame to
frame

= Problem:

= Estimates are inherently noisy
= Error accumulates over time = drift

sual Navigation for Flying Robots 12 Dr. Jirgen Sturm, Computer Vision Group, V



Incremental Motion Estimation Loop Closures
" Idea: Estimate camera motion from frame to " Solution; Use loop-closures to minimize the
frame drift / minimize the error over all constraints
-
7 A > 7K K X

Graph SLAM Example: Graph SLAM on Intel Dataset

[Olson et al., 2006]

Use a graph to represent the model .

Every node in the graph corresponds to a pose
of the robot during mapping

Every edge between two nodes corresponds to
a spatial constraint between them

Graph-based SLAM: Build the graph and find i
the robot poses that minimize the error
introduced by the constraints

<@



LIEY
Example: Graph SLAM on Intel Dataset

@

|
°
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Problem Definition

= Given: Set of observations z;; ¢ R"

=> State vector x = (¢,...,c,)" € R™

P

L
§i

ks
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Graph SLAM Architecture

l Focus of today

Graph optimization

Constraint/graph

generation >
raw sensor (Front-end) graph
data (nodes and edges)

(Back-end)

camera poses

= |nterleaving process of front-end and back-end

= A consistent map helps to determine new
constraints by reducing the search space

L
Visual Navigation for Flying Robots 18 Dr. Jiirgen Sturm, Computer Vision Group, TUM
Map Error
= Real observation Zij
u

Expected observation z;; =c; ©¢;

Difference between observation and expectation

€ij = Zij O Zjj

Given the correct map, this difference s the
result of sensor noise...

L
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Map Error Example: Graph SLAM on Intel Dataset

Real observation Zij

Expected observation z;; = c; ©c;

= Difference between observation and expectation
€j = Zjj o Zij : i
i
]

Given the correct map, this differenceis the
result of sensor noise...

¢
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Incremental Motion Estimation Error Function
* |dea: Estimate camera motion from frame to = Map error (over all observations)
frame
— fX) =) filx) =) ej;(x) I e;(x)
o > > ’
i3 “F
= Minimize this error by optimizing the camera

[ . poses
k@( j\ : ) X" = arg lnillzefj(X)TEf_jleij (x)
ij

: L= = How can%we solve this optimization problem?

Visual Navigation for Flying Robots 13 Dr. Jirgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 22 Dr. Jirgen Sturm, Computer Vision Group, TUM



Non-Linear Minimization

Gauss-Newton Method:

1. Linearize the error function
Compute its derivative

Set the derivative to zero
Solve the linear system

e W

Iterate this procedure until convergence

Non-Linear Minimization

Gauss-Newton Method:

1. Linearize the error function
Compute its derivative

Set the derivative to zero
Solve the linear system

e W

Iterate this procedure until convergence

Non-Linear Minimization

Gauss-Newton Method:

1. Linearize the error function
Compute its derivative

Set the derivative to zero
Solve the linear system

A A

Iterate this procedure until convergence

Step 1: Linearize the Error Function

= Error function
f(x) = Z fij(x) = Zeij(X)TE;jleij(X)
ij ij
= Evaluate the error function around the initial

guess

flx+Ax) =) ey(x+ Ax) 'Y ejj(x + Ax)

17 . . )
J Let’s derive this term first...




Linearize the Error Function

= Approximate the error function around an
initial guess x using Taylor expansion
e;;(x + Ax) ~ e;;(x) + J;;Ax
with

_ [ Oeii(x)  Oeij(x) deij(x)
Jij(x) _( der . de T e )

Visual Navigation for Flying Robots 25 Dr. Jirgen Sturm, Computer Vision Group, TUN

lllustration of the Structure

- T Non-zero only
b _e-']EU ]” at ¢; and C;
} ¥

1 I I - .

Linearizing the Error Function

Linearize f(x z eij(x)" 5 e(x)
~c+2b"'Ax + Ax" HAx

with b’ = ZeTz Jij

ij =i

_ —l
H= Z ij 2ij Jij
= What is the structure of b'and H?
(Remember: all J;;‘s are sparse)

Visual Navigation for Flyin -Ik 21 © Jiireen Sturm. Computer Vision G U
lllustration of the Structure
b = Z bU b: dense vector

I | |+.-+I I

with main diagonal

H: sparse block structure



(Linear) Least Squares Minimization

1. Linearize error function
f(x+ Ax) ~c+ 2b"Ax + Ax HAx
2. Compute the derivative
df(x + Ax)
dAx
3. Set derivative to zero

HAx = —b
4. Solve this linear system of equations, e.g.,
. Ax=—H'b

sual Navigation for Flying Robots 36 Dr. Jirgen Sturm, Computer Vision Group, TUM

=2b +2HAX

Gauss-Newton Method

Problem: f(x) is non-linear!
Algorithm: Repeat until convergence
1. Compute the terms of the linear system

T T -1 Ty —1
b= ey H=) Ji¥;;
i] ij
2. Solve the linear system to get new increment
HAx = —b
3. Update previous estimate

N x(—xzj—AX

sual Navigation for Flying Robots

Gauss-Newton Method

Problem: f(x) is non-linear!
Algorithm: Repeat until convergence
1. Compute the terms of the linear system

T _ T x—1 _ Ty—1
b'=> ey H=) Ji%;Jy
ij ij

2. Solve the linear system to get new increment
HAx = —b

3. Update previous estimate

N x<—xjv—|—/_\x

al Navigation for Flying Robots

Sparsity of the Hessian

= The Hessianis
= positive semi-definit
= symmetric
= sparse
= This allows the use of efficient solvers

= Sparse Cholesky decomposition (~100M matrix
elements)

= Preconditioned conjugate gradients (~1.000 matrix
elements)

" .. Mmany, others

Visual Navigation for Flying Robots 38 Dr. Jirgen Sturm, Computer Vision Group, V



Sparsity of the Hessian

" The Hessianis
= positive semi-definit
= symmetric
" sparse
* This allows the use of efficient solvers
= Sparse Cholesky decomposition (~100M matrix

elements)

* Preconditioned conjugate gradients (~1.000 matrix
elements)

* ... many others

Example in 1D

= Error €12 = 212 — Z12

= Jacobian Ji; = (‘f)‘%j %‘%j) = (1 —1)
= Build linear system of equations
bT = G;FQE_IG]Q = (2 —2)
_ 2 =2
1 (—2 2 )
= Solve the system .
Ar=—H'b but det H =0 ???
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Sparsity of the Hessian

b * The Hessian is

: = positive semi-definit

= symmetric B
; = sparse

— ® This allows the use of efficient solvers

m = Sparse Cholesky decomposition (~100M matrix

g elements)

m = Preconditioned conjugate gradients (~1.000 matrix

g elements)

: = .. many others g
- | & Deutsch Deutschland) | = IEEEER I 1)

What Went Wrong?

= The constraint only specifies a relative
constraint between two nodes

= Any poses for the nodes would be fine as long
as their relative coordinates fit

= One node needs to be fixed
= Option 1: Remove one row/column corresponding
to the fixed pose
= Option 2: Add to H, b a linear constraint 1 -%/_\(:1 =0

= Option 3: Add the identity matrix to // (Levenberg-
Marquardt)

Visual Navigation for Flying Robots 41 Dr. Jirgen Sturm, Computer Vision Group, TUM




Fixing One Node

* The constraint only specifies a relative
constraint between two nodes

= Any poses for the nodes would be fine as long
as their relative coordinates fit

" One node needs to be fixed (here: Option 2)

2 -2 10
H‘(—z 2)+(0 0)

Ar=—H'b b

additional constraint
thatsets Ac; =0

Non-Linear Minimization

" One of the state-of-the-art solution to compute
the maximum likelihood estimate

= Various open-source implementations available
= g20 [Kuemmerle et al., 2011]
= sba [Lourakis and Argyros, 2009]
= {SAM [Kaess et al., 2008]

» Other extensions:
= Robust error functions b

= Alternative parameterizations
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Levenberg-Marquardt Algorithm

= |dea: Add a damping factor
(H+ M)Ax = —b
(J'T+X)Ax=—J"e
= What is the effect of this damping factor?

= Small \?

= Large \?

Bundle Adjustment

= Graph SLAM: Optimize (only) the camera poses

y

x=(c/,...,c)" € RO

= Bundle Adjustment: Optimize both 6DOF
camera poses and 3D (feature) points

— (o) T T TH\T 6n+3m
x=(¢,....¢, . py:---.P,) ER

~ ~— ~
CER()” peRdm

N
= Typically m > n (why?)
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Error Function

Camerapose c; € R’

Feature point p; € R?

Observed feature location z;; € R?

Expected feature location
g(ci,pj) = R,:T(tr‘ —Pj)

h(ci, p;) = guy(cisp;)/9-(ci, Pi)

Visual Navigation for Flying Robots 47 Dr. Jurgen Sturm, Computer Vision Group, TUM

lllustration of the Structure

" Each camera sees several points
= Each point is seen by several cameras

* Cameras are independent of each other (given
the points), same for the points

Error Function

= Difference between observation and
expectation

e'ij = Z,jj - h’(c'i: pJ)
= Error function
flep) =) ey le;
ij

= Covariance Y is often chosen isotropic and on
the order of one pixel

Visual Navigation for Flying Robots 48 Dr. Jirgen Sturm, Computer Vision Group, TUM

Primary Structure

(o)
—Jyep
oy

—Jgep

= Characteristic structure

(J;Jc JT Jp) (Ac)
Il Je Il ) \Ap

(e ) (o)
Hye Hpp Ap

Visual Navigation for Flying Robots



Primary Structure

" Insight: H..and H,, are block-diagonal
(because each constraint depends only on one
camera and one point)

() (- i)

* This can be efficiently solved using the Schur
Complement b

Schur Complement

" Given: Linear system

(@ 5)()-6)
¢ D) \y b
» |f Disinvertible, then (using Gauss elimination)
(A-BD 'C)x=a—BD'b
y =D '(b - Cx)
* Reduced complexity, i.e., invert one p x p and

p x p matrixinstead of one (p+¢q) x (p 1 q)
matrix

Visual Navigation for Flying Robots 52 Dr. Jargen Sturm, Computer Vision Group, TUM

Schur Complement

" Given: Linear system

(e 0)()-C)
¢ D) \y b
= |f Disinvertible, then (using Gauss elimination)
(A-=BD 'C)x=a—BD'b
y = D (b - Cx)
= Reduced complexity, i.e., invert one p x p and

p X p matrixinstead of one (p+¢q) x (p 3 q)
matrix

Visual Navigation for Flying Robots 52 Dr. Jirgen Sturm, Computer Vision Group, V

:
Example Hessian

(Lourakis and Argyros, 2009)

IL = . L | -




From Sparse Maps to Dense Maps

= So far, we only looked at sparse 3D maps
= We know where the (sparse) cameras are
= We know where the (sparse) 3D feature points are

= How can we turn these models into volumetric
3D models?

Visual Navigation for Flying Robots
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From Sparse Maps to Dense Maps

= Today: Estimation of depth dense images
(stereo cameras, laser triangulation, structured
light/Kinect)

= Next week: Dense map representations and
data fusion

Visual Navigation for Flying Robots

Stereo Correspondence Constraints

= Given a pointin the left image, where can the
corresponding point be in the right image?

Visual Navigation for Flying Robots 58



Reminder: Epipolar Geometry

" A pointinoneimage “generates” alinein
another image (called the epipolar line)

= Epipolar constraint %, Ex; = 0
P

Epipolar
line

Epipolar
line

X2
Epipolar plane

e e’

) 1 ] | __— Cco
C1 Eplp\ON Baseline pipole
Visual Navigation for Flying Robots Dr. Jirgen Sturm, Computer Vision Group, TUM

Example: Converging Cameras

Visual Navigation for Flying Robots 62

Epipolar Constraint

= This is useful because it reduces the
correspondence problem to a 1D search along
an epipolarline

Visual Navigation for Flying Robots 61 Dr. Jiirgen Sturm, Computer Vision Group, TUM

Example: Parallel Cameras

e at ,I / e at

—— - 1 o — | =

infinity : P // . infinity
& -
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Rectification Example: Rectification

" |n practice, it is convenient if the image
scanlines (rows) are the epipolar lines

—> Reproject image planes onto a common plane
parallel to the baseline (two 3x3 homographies)

= Afterwards pixel motion is horizontal

»

o % %
Basic Stereo Algorithm Block Matching Algorithm

" For each pixel in the leftimage Input: Two images and camera calibrations

= Compare with every pixel on the same epipolar line Output: Disparity (or depth) image

':t:e r'glht m:]age ) Algorithm:
 Dinl ith mini tchi t (noi
ick pixel with minimum matching cost (noisy) 1. Geometry correction (undistortion and
= Better: match small blocks/patches (SSD, SAD, NCC) rectification)

2. Matching cost computation along search window
3. Extrema extraction (at sub-pixel accuracy)

Post-filtering (clean up noise) .

) rightimage
left image g g
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Example

= Qutput
e
Visual Navigation for Flying Robots 68 Dr. Jurgen Sturm, Computer Vision Group, TUM

Problems with Stereo

* Block matching typically fails in regions with
low texture

= Global optimization/regularization (speciality of our
research group)

= Additional texture projection

Visual Navigation for Flying Robots 70 Dr. Jirgen Sturm, Computer Vision Group, TUM

What is the Influence of the Block Size?

Common choices are 5x5 .. 11x11

Smaller neighborhood: more details

Larger neighborhood: less noise

= Suppress pixels with low confidence (e.g.,
check ratio best match vs. 2" best match)

: E 2y 7]

3x3

Visual Navigation for Flying Robots 69 Dr. Jiirgen Sturm, Computer Vision Group, TUM

Example: PR2 Robot

with Projected Texture Stereo

wide-angle stereo pair [

pattern projector

narrow-angle stereo pair

5 MP high-res camera

Visual Navigation for Flying Robots 71 Dr. Jirgen Sturm, Computer Vision Group, TUM



Laser Triangulation Laser Triangulation

Idea: = Function principle
= Well-defined light pattern (e.g., point or line) |

projected on scene [Craser | g
= Observed by a line/matrix camera or a baseline [, pivhole e

position-sensitive device (PSD) gsparty 43 |l
= Simple triangulation to compute distance o -

focal Ienglt‘h f B depth 2 B
. . L
% = Depth triangulation z = f— .
(note: same for stereo disparities)
Example: Neato XV-11 How Does the Data Look Like?

= K. Konolige, “A low-cost laser distance sensor”,
ICRA 2008

= Specs: 360deg, 10Hz, 30 USD

’&q!
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Laser Triangulation

= Stripe laser + 2D camera
= Often used on conveyer belts (volume sensing)

* Large baseline gives better depth resolution
but more occlusions = use two cameras

Structured Light

= Multiple stripes / 2D pattern
= Data association more difficult

" Coding schemes
= Temporal: Coded light

Structured Light

= Multiple stripes / 2D pattern
= Data association more difficult

Ten iten D Yo Gt s fon

Structured Light

= Multiple stripes / 2D pattern
= Data association more difficult
= Coding schemes

= Temporal: Coded light

= Wavelength: Color
= Spatial: Pattern (e.g., diffraction patterns)




CIEY
Sensor Principle of Kinect

» Kinect projects a diffraction pattern (speckles)
in near-infrared light

= CMOS IR camera observes the scene

“stereo” Baseline

Infrared Infrared
pattern camera
prolectorColor N

camera

LIRY
Sensor Principle of Kinect

Infrared pattern
(known)

Infrared image
(with distorted pattern)

Standard
> block matcher
(9x9)

v

| Disparity image |

Depth image
(color encodes distance from
camera)

L1EN
Example Data

= Kinect provides color (RGB) and depth (D) video

= This allows for novel approaches for (robot)
perception

| !

T3
1,

(=Y
Sensor Principle of Kinect

= Patternis memorized at a known depth
= For each pixelin the IR image

= Extract 9x9 template from memorized pattern

= Correlate with current IR image over 64 pixels and
search for the maximum

® |[nterpolate maximum to obtain sub-pixel accuracy
(1/8 pixel)
= Calculate depth by triangulation

N



Technical Specs

Infrared camera has 640x480 @ 30 Hz

* Depth correlation runs on FPGA

* 11-bit depth image

= 0.8m—-5m range

= Depth sensing does not work in direct sunlight (why?)
RGB camera has 640x480 @ 30 Hz

= Bayer color filter
Four 16-bit microphones with DSP for beam forming @
16kHz
Requires 12V (for motor), weighs 500 grams

Human pose recognition runs on Xbox CPU and uses
only 10-15% processing power @30 Hz

(Paper: http://research.microsoft.com/apps/pubs/deflult.aspx?id=145347)

=&
Impact of the Kinect Sensor

Sold >18M units, >8M in first 60 days (Guiness:

“fastest selling consumer electronics device)
Has become a “standard” sensor in robotics

History

2005: Developed by PrimeSense (Israel)
2006: Offer to Nintendo and Microsoft, both companies declined

2007: Alex Kidman becomes new incubation director at Microsoft, decides
to explore PrimeSense device. Johnny Lee assembles a team to investigate
technology and develop game concepts

2008: The group around Prof. Andrew Blake and Jamie Shotton (Microsoft
Research) develops pose recognition

2009: The group around Prof. Dieter Fox (Intel Labs / Univ. of Washington)
works on RGB-D mapping and RGB-D object recognition

Nov 4, 2010: Official market launch
Nov 10, 2010: First open-source driver available

2011: First programming competitions (ROS 3D, PrimeSense), First
workshops (RSS, Euron)

N
2012: First special Issues (JVCI, T-SMC)

Iy

Kinect: Applications




‘”g| Ende der Bildschirmprasentation. Zum Beenden klicken.

Open Research Questions

* How can RGB-D sensing facilitate in solving
hard perception problems in robotics?
® |nterest points and feature descriptors?
= Simultaneous localization and mapping?
= Collision avoidance and visual navigation?
= Object recognition and localization?
*= Human-robot interaction?
= Semantic scene interpretation?




