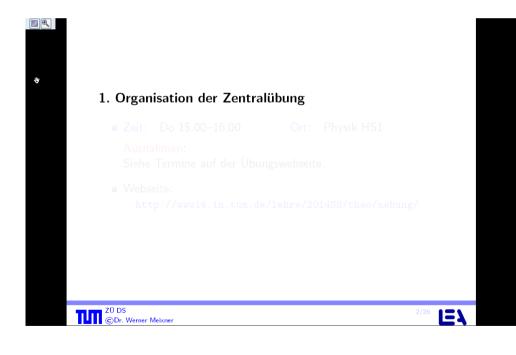
Script generated by TTT

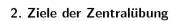
Title: Meixner: ZUE_DS (10.04.2014)

Date: Thu Apr 10 15:19:38 CEST 2014

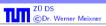
Duration: 44:41 min

Pages: 17





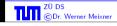
Diese sind: Spezielle und Allgemeine didaktische Ziele im Sinne einer Verstärkung des Erfolges beim Studium der THEO.



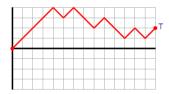
3. Das Ballot-Problem

(DS Vorl. WS 12/13 Prof. Mayr) Bei einer Wahl erhält Kandidat $A\ a$ Stimmen, Kandidat $B\ b$ Stimmen, mit a > b > 0. Die Stimmzettel werden sequentiell ausgezählt.

Zählproblem: Wie viele Zählfolgen gibt es, so dass A nach jedem Schritt in Führung ist?



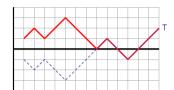
Es ist leicht zu sehen, dass die Anzahl der "guten" Pfade vom Ursprung zum Punkt T := (a + b, a - b) gleich der Anzahl der "guten" Pfade vom Punkt (1,1) zum Punkt T ist:

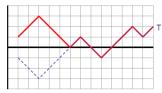


Es ist leicht zu sehen, dass die Anzahl der "guten" Pfade vom Ursprung zum Punkt T:=(a+b,a-b) gleich der Anzahl der "", guten" Pfade vom Punkt (1,1) zum Punkt T ist:

E7

Durch Spiegelung des Anfangsegments eines "schlechten" Pfades bis zum ersten Zusammentreffen mit der horizontalen Achse an dieser Achse:





erhalten wir, dass die Anzahl der "schlechten" Pfade von (1,1) zu T gleich der Anzahl aller Pfade von (1,-1) zu T ist.

ZÜ DS ©Dr. Werner Meixner

3 Das Ballot-Problem

Damit ergibt sich

Anzahl der "guten" Pfade von (0,0) zu T

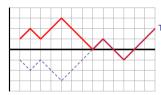
$$=$$
 Anzahl der "guten" Pfade von $(1,1)$ zu

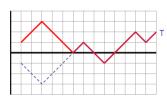
$$= \binom{a-1+b}{b} - \binom{(a-1+1)+(b-1)}{a}$$
$$= \binom{a+b-1}{b} - \binom{a+b-1}{a}$$

ZÜ DS ©Dr. Werner Meixner

E

Durch Spiegelung des Anfangsegments eines "schlechten" Pfades bis zum ersten Zusammentreffen mit der horizontalen Achse an dieser Achse:





erhalten wir, dass die Anzahl der "schlechten" Pfade von (1,1) zu T gleich der Anzahl aller Pfade von (1, -1) zu T ist.

Damit ergibt sich

Anzahl der "guten" Pfade von (0,0) zu T

$$=$$
 Anzahl der "guten" Pfade von $(1,1)$ zu

$$= \binom{a-1+b}{b} - \binom{(a-1+1)+(b-1)}{a}$$

$$= \binom{a+b-1}{b} - \binom{a+b-1}{a}$$

$$= \frac{a-b}{a+b} \binom{a+b}{a}.$$

E7

Transformation des Ballot-Problems

Seien $\Sigma = \{(,)\}$ der geordnete Zeichenvorrat mit einer öffnenden bzw. einer schließenden Klammer.

Für $w\in \Sigma^*$ definieren wir $|w|_{(}$ bzw. $|w|_{()}$ als die Anzahl der in w enthaltenen öffnenden bzw. schließenden Klammern.

u ist ein Anfangsteilwort (Praefix) von w, falls es ein Wort v gibt, so dass w=uv gilt.

Wir nennen ein nicht leeres Wort $w \in \Sigma^*$ positiv, falls $|u|_{(>|u|_)}$ für alle nicht leeren Anfangsteilwörter u von w gilt.

Zählproblem: Wie viele positive Wörter über Σ mit a öffnenden und b schließenden Klammern gibt es, wobei $a>b\geq 0$ gelte!

9/26

4. Vorbereitung TA Blatt 1

4.1 VA 1

Induktion von Operationen

Sei (A, \circ) eine Algebra

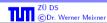
Dann ist $(\mathcal{P}(A), \circ')$ eine Algebra mit den folgenden Definitioner

Seien $M, N \subseteq A$

Dann heißt \circ' die von \circ auf Teilmengen von A induzierte Operation, wobei gilt:

 $M \circ' N := \{m \circ n \; ; \; m \in M, n \in N\}$

Kurzschreibweisen: In bekanntem Kontext werden für $M\circ' N$ neist die Kurzschreibweisen $M\circ N$ oder MN verwendet.



Seien Σ ein Alphabet und $A,B,C\subseteq\Sigma^*$ formale Sprachen. Beweisen Sie die folgenden Aussagen:

- $\bullet (i) \quad A(B \cap C) \subseteq AB \cap AC .$
 - (ii) $B \subseteq C \Longrightarrow AB \subseteq AC$.

<u>Hinweis:</u> Es handelt sich hier um zwei äquivalente Monotonieeigenschaften.

- $A \subseteq B \Longrightarrow A^n \subseteq B^n \quad \text{ für alle } n \in \mathbb{N}_0 \, .$
- $A \subseteq B \Longrightarrow A^* \subseteq B^* .$

Lösung 1 (i):

Aus $w \in A(B \cap C)$ folgt w = uv für gewisse u,v mit $u \in A$ und $v \in (B \cap C)$

Damit folgt $uv \in AB$ und $uv \in AC$, d.h. $w \in AB \cap AC$

Lösung 3

Sei $A \subseteq B$.

Nach Definition gilt $A^* = \bigcup_{n \in \mathbb{N}_0} A^n$. Wir zeiger $x \in A^* \Longrightarrow x \in B^*$.

Für ein $x \in A^*$ gibt es ein $n \in \mathbb{N}_0$, so dass $x \in A^n$.

Mit Teilaufgabe 2 folgt $x \in B^n \subseteq B^*$

E7

Lösung 1 (i):

Aus $w \in A(B \cap C)$ folgt w = uv für gewisse u, v mit $u \in A$ und $v \in (B \cap C)$

Damit folgt $uv \in AB$ und $uv \in AC$, d.h. $w \in AB \cap AC$

Lösung 3

Sei $A\subseteq B$. Nach Definition gilt $A^*=\bigcup_{n\in\mathbb{N}_0}A^n.$ Wir zeiger

Für ein $x \in A^*$ gibt es ein $n \in \mathbb{N}_0$, so dass $x \in A^n$

Mit Teilaufgabe 2 folgt $x \in B^n \subseteq B^*$

E

4.2 VA 2

Wir nennen eine Phrasenstrukturgrammatik $G=(V,\Sigma,P,S)$ nullierbar kontextfrei, wenn alle Regeln aus P die Form $A\underset{p}{\rightarrow}\alpha$ mit $A\in V,\ \alpha\in\Gamma^*$ und $\Gamma=V\cup\Sigma$ besitzen.

 Γ^* heißt Menge der Satzformen über dem Vokabular $\Gamma.$

Sei G eine nullierbar kontextfreie Grammatik.

