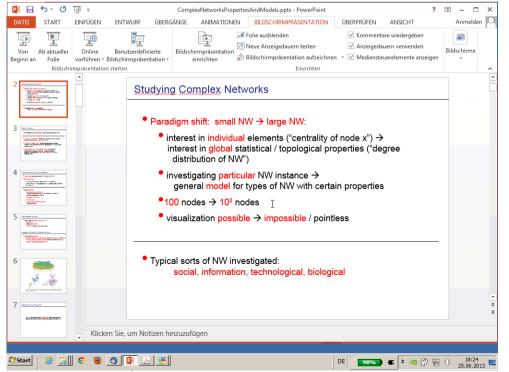
Script generated by TTT

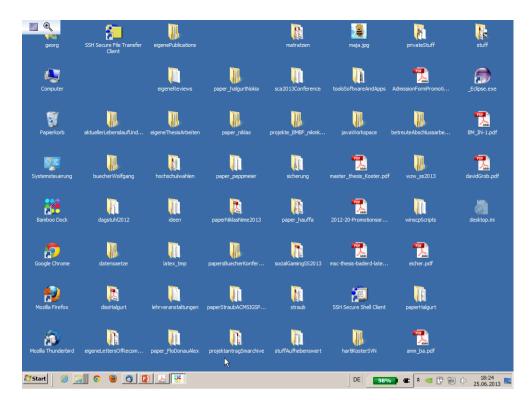
Title: profile1 (25.06.2013)

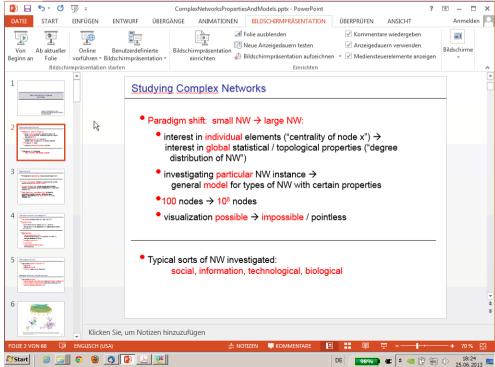
Date: Tue Jun 25 18:24:23 CEST 2013

Duration: 89:29 min

Pages: 100







Real World Networks: Properties and Models

Lecture will mostly follow [1], thus corresponding citations are often omitted to increase readability

Mean Average Path Length

- "Small World Effect": l(n) "small" $\rightarrow l(n) \in O(log(n))$
- undirected graph:

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}$$

formula also counts 0 distances from i to i: $\frac{1}{2}$ n(n+1) = $\frac{1}{2}$ n(n-1) + n

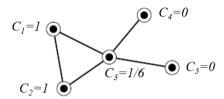
• Expression allowing for disconnected components (where $d_{ij}=\infty$ can occur): harmonic mean:

$$\ell^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i>j} d_{ij}^{-1}$$

Transitivity / Clustering Coefficient

Example:

$$C^{(1)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}} = \frac{3 \times 1}{8} = 0.375$$



R

$$C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$
 with $C_{i} = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}$

$$C^{(2)} = 1/5 (1 + 1 + 1/6 + 0 + 0) = 13/30 = 0.433333$$

Mean Average Path Length

- "Small World Effect": l(n) "small" $\rightarrow l(n) \in O(log(g))$
- undirected graph:

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i > j} d_{ij}$$

formula also counts 0 distances from i to i: $\frac{1}{2}$ n(n+1) = $\frac{1}{2}$ n(n-1) + n

• Expression allowing for disconnected components (where d_{ij}=∞ can occur): harmonic mean:

$$\ell^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}^{-1}$$

Transitivity / Clustering Coefficient

Clustering coefficient (whole graph):

$$C = C^{(I)} = \frac{3 \times \text{ number of triangles in the network}}{\text{number of connected triples of vertices}}$$
$$= \frac{6 \times \text{ number of triangles in the network}}{\text{number of paths of length two}}$$

Clustering coefficient (Watts-Strogatz-version, for node i):

$$\begin{split} C_i &= \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i} \\ &= \frac{|\left\{e_{\{kj\}} \mid v_k, v_j \in N_i\right\}|}{\underbrace{\frac{k_i(k_i-1)}{2}}} \end{split} \tag{see Introduction , k_i = degree of node i)} \end{split}$$

Clustering coefficient (Watts-Strogatz-version, for whole graph):

$$C = C^{(2)} = \frac{1}{n} \sum_{i} C_{i}$$

mean of ratio instead of ratio of means

R

R

Degree Distribution

- Notation: $p(k) = p_k = \text{ fraction of nodes having degree } k$
- Cumulative distribution:
 - $P_k = \sum_{k'=k}^{\infty} p_{k'}$

• power law:

$$p_k \sim k^{-\alpha}$$
 $\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

Notation:

p(FOAF)

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$

 $\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

• Notation:

 $p(k) = p_k = fraction of nodes having degree k$

• Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

• power law:

$$p_k \sim k^{-\alpha}$$
 $\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$

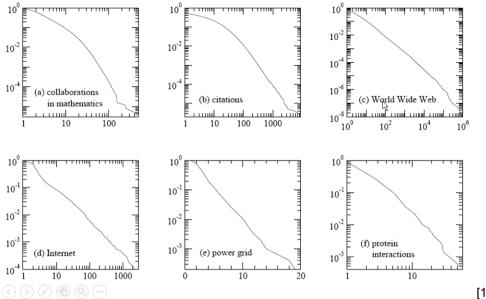
exponential:

$$p_{k} \sim e^{-k/\kappa}$$

$$P_{k} = \sum_{k'=k}^{\infty} p_{k} \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Degree Distribution

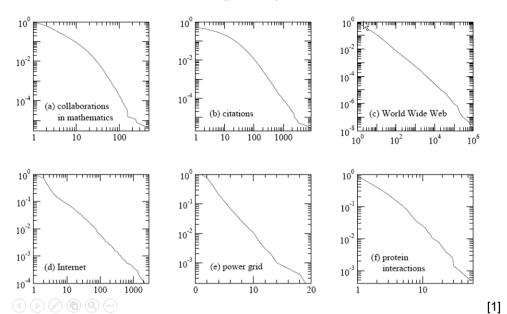
Cumulative distributions Pk of example real world NW



Camalaure alouibauerie i k or example roai world it

Degree Distribution

Cumulative distributions P_k of example real world NW



Degree Distribution

 $p_k \sim k^{-\alpha}$

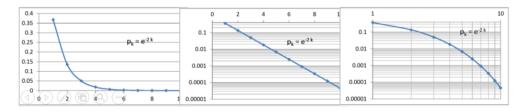
Degree Distribution

Examples:

- Power law: citation NW, WWW, Internet, metabolic NW, telephone call NW, human sexual contact NW etc.
- Exponential: power grid, railway NW
- Power law with exp. cut-offs: Movie co-actor NW

V

$p_k \sim \mathrm{e}^{-k/\kappa}$



Maximum Degree

"less or equal than one vertex with k_{max}"

 \rightarrow np_{k_max} = 1 \rightarrow for power law p_k = k^{-α}: k_{max} ~ n^{1/α} but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

→ expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

Maximum Degree

- "less or equal than one vertex with k_{max}"
- \rightarrow np_{k_max} = 1 \rightarrow for power law p_k = k^{-α}: k_{max} ~ n^{1/α} but; not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

Maximum Degree

,less or equal than one vertex with k_{max}

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^{n} \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

• → expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

Maximum Degree

• "less or equal than one vertex with k_{max} " $\rightarrow np_{k max} = 1 \rightarrow for power law p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$

but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• → prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

Degree Distribution

Notation:

 $p(k) = p_k = fraction of nodes having degree k$

Cumulative distribution:

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

power law:

$$p_k \sim k^{-\alpha}$$
 $\Rightarrow P_k \sim \sum_{k'=k}^{\infty} k'^{-\alpha} \sim k^{-(\alpha-1)}$

exponential:

$$p_k \sim e^{-k/\kappa}$$

$$P_k = \sum_{k'=k}^{\infty} p_k \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Maximum Degree

• "less or equal than one vertex with k_{max}"

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• > prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

Maximum Degree

- "less or equal than one vertex with k_{max}"
- → $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

B

- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

• > expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

Maximum Degree

- ",less or equal than one vertex with k_{max} " $\rightarrow np_{k max} = 1 \rightarrow for power law p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$
- but: not very accurate estimation
- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• → prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_k$$

Maximum Degree

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d} p_k}{\mathrm{d} k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: $p_{\bf k}$ is small for ${\bf k}$ > ${\bf k}_{\rm max}$ and that $np_k \ll 1$ and that $P_k \ll 1$)

 \rightarrow we get for power law $p_k \sim k^{-\alpha}$ that $k_{\max} \sim n^{1/(\alpha-1)}$

Maximum Degree

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \left[\left(\frac{\mathrm{d} p_k}{\mathrm{d} k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: $p_{\rm k}$ is small for k > k_{max} and that $np_k \ll 1$ and that $P_k \ll 1$)

$$\rightarrow$$
we get for power law $\,p_k \sim k^{-\alpha}\,\,$ that $\,\,k_{
m max} \sim n^{1/(\alpha-1)}$

Maximum Degree

,less or equal than one vertex with k_{max}

→ $np_{k_{max}} = 1$ → for power law $p_k = k^{-\alpha}$: $k_{max} \sim n^{1/\alpha}$ but: not very accurate estimation

- Other estimation:
 - prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

Maximum Degree

since h_k is small for small k and also for large k → take as k_{max} the modal value of h_k →

modal value :
$$\frac{d}{dk} h_k = 0$$

Using $dP_k/dk = p_k$ we get

$$\frac{d}{dk} h_k = n \quad \left[\left(\frac{\mathrm{d} p_k}{\mathrm{d} k} - p_k \right) (p_k + 1 - P_k)^{n-1} + p_k (1 - P_k)^{n-1} \right] = 0$$

or k_{max} is a solution of

$$\frac{\mathrm{d}p_k}{\mathrm{d}k} \simeq -np_k^2$$

(assuming: p_k is small for $k > k_{max}$ and that $np_k \ll 1$ and that $P_k \ll 1$)

$$ightarrow$$
we get for power law $\,p_k \sim k^{-\alpha} \,\,$ that $\,\,k_{
m max} \sim n^{1/(\alpha-1)}$

Maximum Degree

"less or equal than one vertex with k_{max}"

 \rightarrow np_{k max} = 1 \rightarrow for power law p_k = k^{- α}: k_{max} ~ n^{1/ α} but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

• prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^{n} \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

Network Resilience

- What happens if nodes are removed? (interesting e.g. for vaccination \(\bar{\parabole} \) effects in disease spreading in human contact networks)
- For power law networks:

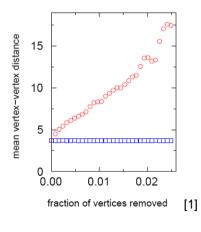
remove random nodes: no effect on mean distances

remove high degree nodes: drastic effect

Interpretations:

Internet is easy to attack

Internet is not easy to attack



Maximum Degree

• "less or equal than one vertex with k_{max}"

 \rightarrow np_{k max} = 1 \rightarrow for power law p_k = k^{- α}: k_{max} ~ n^{1/ α} but: not very accurate estimation

Other estimation:

prob p of "exactly m nodes with k and rest of nodes smaller than k":

$$\binom{n}{m}p_k^m(1-P_k)^{n-m}$$

◆ prob of k being the highest degree in graph:

$$h_k = \sum_{m=1}^n \binom{n}{m} p_k^m (1 - P_k)^{n-m}$$

= $(p_k + 1 - P_k)^n - (1 - P_k)^n$

• > expected highest degree:

$$k_{\text{max}} = \sum_{k} k h_{k}$$

Network Resilience

- What happens if nodes are removed? (interesting e.g. for vaccination) effects in disease spreading in human contact networks)
- For power law networks:

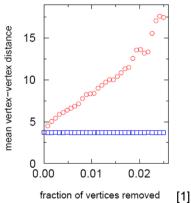
remove random nodes: no effect on mean distances

remove high degree nodes: drastic effect

Interpretations:

Internet is easy to attack

Internet is not easy to attack



Network Resilience

- What happens if nodes are removed? (interesting e.g. for vaccination effects in disease spreading in human contact networks)
- For power law networks:

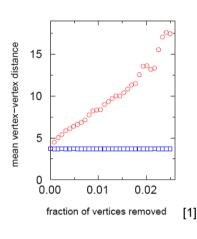
remove random nodes : no effect on mean distances

remove high degree nodes: drastic effect

Interpretations:

Internet is easy to attack

Internet is not easy to attack



Mixing Patterns

Ecological NW, Internet, some social NW:

Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes of same class OR

Disassortative Mixing (Heterophily): Nodes attach to nodes of different classes (almost n-partite behavior)

Diassortativity:

Food Web: Plants ←→ Herbivores ←→ Carnivores but few Plants ←→ Plants etc.

Internet: Backbones provider ←→ ISP ←→ end user but few ISP ←→ ISP etc.

Assortativity: Social NW

Mixing Patterns

Ecological NW, Internet, some social NW:
 Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes of same class OR

Disassortative Mixing (Heterophily): Nodes attach to nodes of different classes (almost n-partite behavior)

Diassortativity:

Food Web: Plants ←→ Herbivores ←→ Carnivores but few Plants ←→ Plants etc.

Internet: Backbones provider ←→ ISP ←→ end user but few ISP ←→ ISP etc.

Assortativity: Social NW

Mixing Patterns

				wome	en	
			black	hispanic	white	other
$\mathbf{E} =$		black	506	32	69	26
L	men	hispanic	23	308	114	38
	Ü	white	26	46	599	68
		other	10	14	47	32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

lacktriangle measure mixing: analogous to modularity: mixing matrix $\mathbf{e} = rac{\mathbf{E}}{\parallel \mathbf{E} \parallel}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
, $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

Mixing Patterns

		D _c		wom	en		
		-%	black	hispanic	white	other	
$\mathbf{E} =$		black	506	32	69	26	
L	en	hispanic	23	308	114	38	
	men	white	26	46	599	68	
		other	10	14	47	32	

TABLE III Couples in the study of Catania *et al.* [85] tabulated by race of either partner. After Morris [302].

 $^{\bullet}$ measure mixing: analogous to modularity: mixing matrix $\ e = \frac{E}{\parallel E \parallel}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
, $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

Mixing Patterns

			wome	en	
		black	hispanic	white	other
	black	506	32	69	26
en	hispanic	23	308	114	38
Ħ	white	26	46	599	68
	other	10	14	47	32
	men	# hispanic white	black 506 hispanic 23 white 26	black hispanic	black 506 32 69 hispanic 23 308 114 white 26 46 599

TABLE III Couples in the study of Catania *et al.* [85] tabulated by race of either partner. After Morris [302].

ullet measure mixing: analogous to modularity: mixing matrix $\ e = rac{\mathbf{E}}{\parallel \mathbf{E} \parallel}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
, $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

Mixing Patterns

				wom	en	
			black	hispanic	white	other
$\mathbf{E} =$		black	506	32	69	26
	men	hispanic	23	308	114	38
	Ĕ	white	26	46	₹ 599	68
		other	10	14	47	32
		'	•			13 3

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

 $^{\bullet}$ measure mixing: analogous to modularity: mixing matrix $\mathbf{\,e}=\frac{\mathbf{E}}{\parallel\mathbf{E}\parallel}$

$$\rightarrow P(j|i) = e_{ij} / \sum_{j} e_{ij}$$
, $\sum_{ij} e_{ij} = 1$, $\sum_{j} P(j|i) = 1$

Mixing Patterns

			women			
			black	hispanic	white	other
T -		black	506	32	69	26
$\mathbf{E} =$	an	hispanic	23	308	114	38
	men	white	26	46	599	68
		other	10	14	47	32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

• > first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

Mixing Patterns

				wom	en	
			black	hispanic	white	other
F =		black	506	32	69	26
L –	men	hispanic	23	308	114	38
	Ē	white	26	46	599	68
		other	10	14	47	32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

B

second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

Mixing Patterns

TABLE III Couples in the study of Catania *et al.* [85] tabulated by race of either partner. After Morris [302].

first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

Mixing Patterns

 E
 black black lispanic
 white other white
 other other lispanic

 white other lispanic
 23
 32
 69
 26

 white lispanic
 23
 308
 114
 38

 white lispanic
 26
 46
 599
 68

 other lispanic
 10
 14
 47
 32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

•

first measure for Assortativity:

 $Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$

issues: Asymmetry of E → two values; Not respecting size of classes

→ second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

Mixing Patterns

			black	hispanic	white	other
F =		black	506	32	69	26
L –	men	hispanic	23	308	114	38
	Ä	white	26	46	599	68
		other	10	14	47	32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

women

first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

E =

			wom	en	
		black	hispanic	white	other
	black	506	32	69	26
ņ	hispanic	23	308	114	38
men	white	26	46	599	68
	other	10	14	47	32

TABLE III Couples in the study of Catania et al. [85] tabulated by race of either partner. After Morris [302].

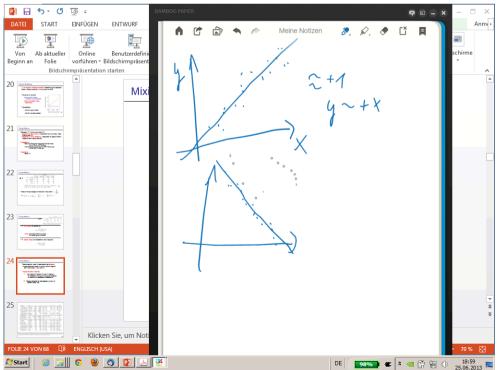
• → first measure for Assortativity:

$$Q = \frac{\sum_{i} P(i|i) - 1}{N - 1}$$

issues: Asymmetry of E → two values; Not respecting size of classes

• → second measure for Assortativity: (cmp. Modularity)

$$r = \frac{\operatorname{Tr} \mathbf{e} - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$$

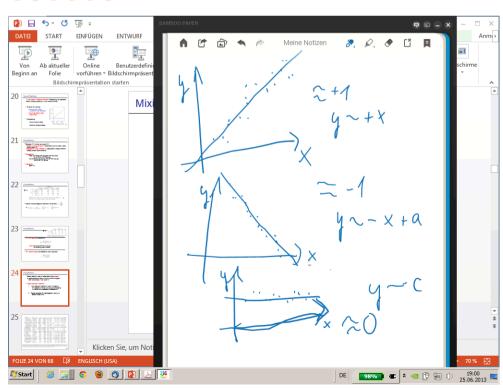


Mixing Patterns

- Special example: "class" of nodes determined by degree
- → nodes attached to nodes with same or different degree?

 Both variants occur in real world NW
- Degree correlation measures:
 - 1) mean degree of neighbors of node with degree k:
 - → if assortative mixing: curve should be increasing
 - → Internet: curve decreases → diassortativity,
 - Pearson correlation for node degrees k_i and k_j of adjacent nodes i and j

V

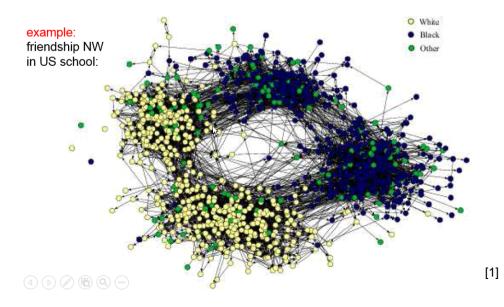


	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25 516 482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
socia.	biology coauthorship	undirected	1 520 251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
800	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
_	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
tio.	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
Ë	citation network	directed	783 339	6716198	8.57		3.0/-				351
information	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	_	0.13	0.15	0.157	244
.=	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
-8	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
.g	train routes	undirected	587	19 603	66.79	2.16	_		0.69	-0.033	366
technological	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
큥	software classes	directed	1 377	2 213	1.61	1.51	_	0.033	0.012	-0.119	395
4	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
83	protein interactions	undirected	2115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
biological	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
pio pio	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	30%	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices i ber of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out ments are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Set last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

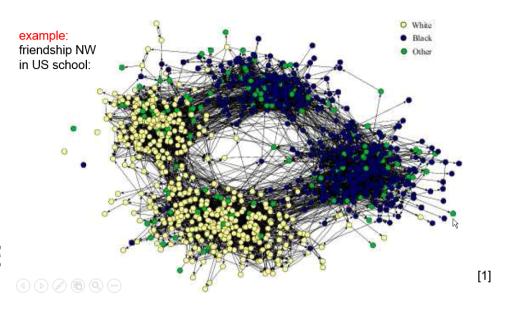
Community and Group Structure

Is NW well clustered? → see Parts on Clustering



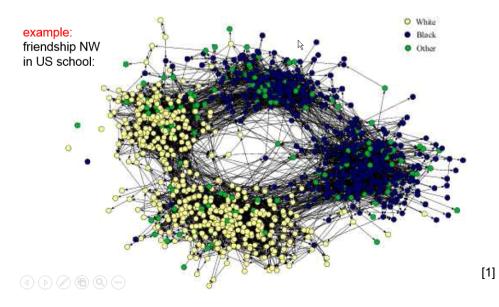
Community and Group Structure

• Is NW well clustered? → see Parts on Clustering



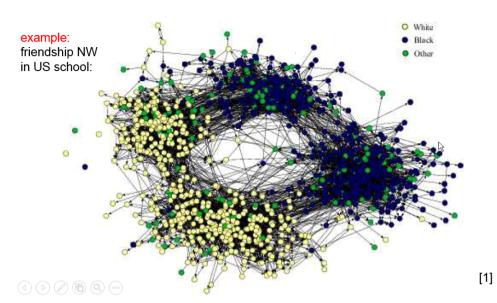
Community and Group Structure

• Is NW well clustered? → see Parts on Clustering



Community and Group Structure

Is NW well clustered? → see Parts on Clustering



Random Graph Models: Poisson Graph

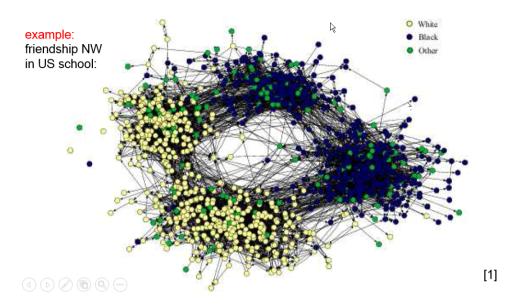
- G_{n p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• p_k: probability that a node has degree k:
$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Community and Group Structure

Is NW well clustered? → see Parts on Clustering



Random Graph Models: Poisson Graph

R

- G_{n p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• p_k: probability that a node has degree k:
$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Random Graph Models: Poisson Graph

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Random Graph Models: Poisson Graph

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• p_k: probability that a node has degree k:
$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))

• In such models G_{n,p} phase transitions exist for properties Q: "threshold function" q(n) (with q(n) → ∞ if n → ∞) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models $G_{n,p}$ phase transitions exist for properties Q: "threshold function" q(n) (with $q(n) \rightarrow \infty$ if $n \rightarrow \infty$) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- ${}^{\bullet}$ \rightarrow fraction S of graph occupied by X is $~S=1-u~\rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of $G_{n,p}$

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k $\rightarrow u = \sum_{k=0}^{\infty} p_k u^k = e^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = e^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S = 1 u \rightarrow$

$$S = 1 - e^{-zS}$$

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- pk: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for n → ∞ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Random Graph Models: Poisson Graph

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for $n \to \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) \to "Poisson random graphs"

Random Graph Models: Poisson Graph

- G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for $n \to \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) \to "Poisson random graphs"

Random Graph Models: Poisson Graph

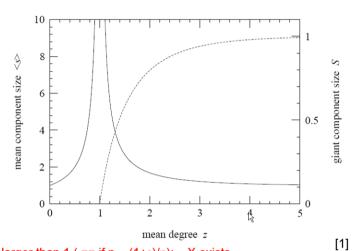
Example: giant component / connectedness of $G_{n,p}$

- Let u be the fraction of nodes that do not belong to giant component X == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \quad \stackrel{}{\rightarrow} \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $\ S=1-u\ \rightarrow$

$$S = 1 - e^{-zS}$$

• $S = 1 - e^{-zS}$

• mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+z}$

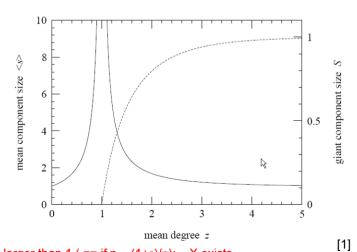


 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

• $S = 1 - e^{-zS}$

• mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



Random Graph Models: Poisson Graph

• G_{n,p}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• pk: probability that a node has degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) \rightarrow "Poisson random graphs"

R

Random Graph Models: Poisson Graph

Very coarse (!!!) estimation of diameter l of $G_{n,p}$:

average degree of nodes: z

→ in a distance of d from a node i should be approximately z^d many nodes

 \rightarrow if $z^d = n : d = l$

→ l ~ log n / log z ~ log n (if z is kept constant)

For a more exact derivation of the result see references in [1]

 We see: it is not difficult (in terms of how large must connectivity be) to acheive small diameters

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient $C^{(1)}$ of $G_{n,p}$:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	ℓ (real)	1 (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

Random Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

- lacktriangle Clustering coefficient $C^{(1)}$ of $G_{n,p}$:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	1 (real)	1 (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

Random Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient C⁽¹⁾ of G_{n,p}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	ℓ (real)	1 (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power ©rid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

Random Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient C⁽¹⁾ of G_{n,p}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	i (real)	1 (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient $C^{(1)}$ of $G_{n,p}$:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	ℓ (real)	ℓ (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

Random Graph Models: More Refined Models

- Instead of having connection probability p as in Poisson G_{n,p}: demand certain degree distributions p_k (e.g. power law)
- → results are promising but still not in congruence with real world NW
- ◆ still many difficult open problems

R

Random Graph Models: Poisson Graph

- Furthermore PRG:
 - has random mixing patterns,
 - is not navigatable with local search,
 - has no community structure

B

Random Graph Models: Poisson Graph

Very coarse (!!!) estimation of diameter l of $G_{n,p}$:

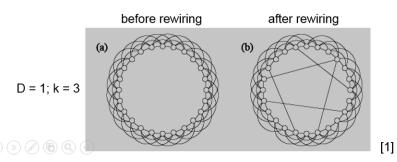
- average degree of nodes: z
 - → in a distance of d from a node i should be approximately z^d many nodes
 - \rightarrow if $z^d = n : d = l$
 - → l ~ log n / log z ~ log n (if z is kept constant)
- For a more exact derivation of the result see references in [1]
- We see: it is not difficult (in terms of how large must connectivity be) to acheive small diameters

Random Graph Models: More Refined Models

- Instead of having connection probability p as in Poisson G_{n,p}: demand certain degree distributions p_k (e.g. power law)
- → results are promising but still not in congruence with real world NW
- → still many difficult open problems

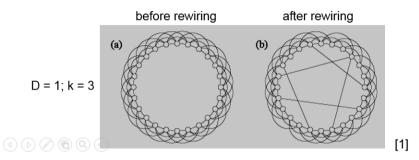
Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - "rewiring" of edges with probability p

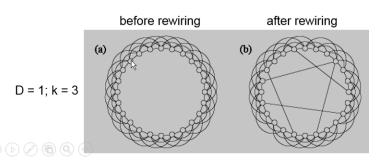


Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p



- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p



- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - "rewiring" of edges with probability b

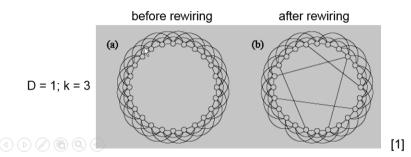


Watts Strogatz Model

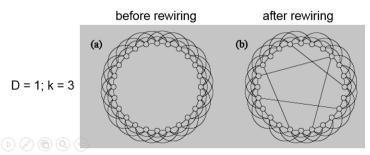
- p: transition between regular lattice and sth. like a random graph: (for D=1:)
 - p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - l = L / 4k for $L \rightarrow \infty$ \rightarrow no small world effect
 - p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- $l = \log L / \log k$ for $L \rightarrow \infty$
- → small world effect.

Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p



- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most **k**
 - → total number of edges = L k
 - grewiring of edges with probability p



p: transition between regular lattice and sth. like a random graph: (for D=1:)

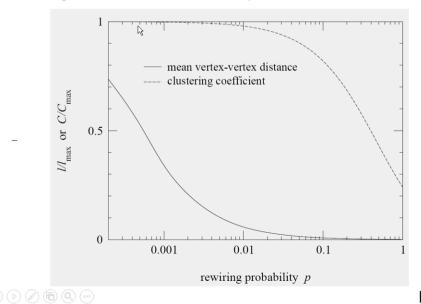
- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - l = L/4k for $L \rightarrow \infty$ \rightarrow no small world effect
- p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- $l = \log L / \log k$ for $L \rightarrow \infty$ > small world effect.

p: transition between regular lattice and sth. like a random graph: (for D=1:)

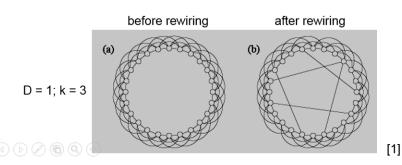
- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) \rightarrow 3/4 for k \rightarrow ∞ \rightarrow clustering coeff. "ok"
 - l = L / 4k for L→∞ → no small world effect
- p=1: similar to a random graph:
 - C ~ 2k / L for L→∞ → clustering coeff too small
 - $l = \log L / \log k$ for $L \rightarrow \infty$ \rightarrow small world effect.

Watts Strogatz Model

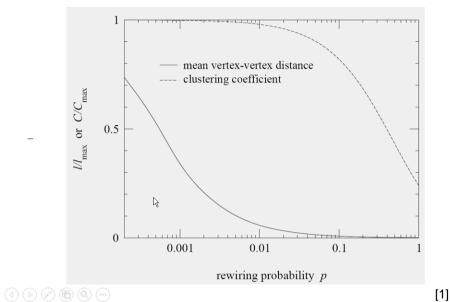
• Interesting area: intermediate values for p: (shown: variant (2), similar in orig. model):



- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - _ "rewiring" of edges with probability p

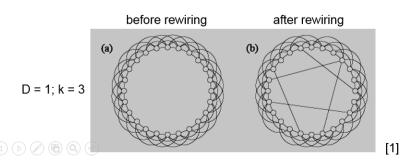


Interesting area: intermediate values for p: (shown: variant (2), similar in orig. model):



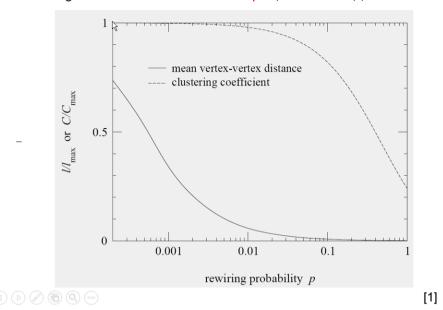
Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - _ "rewiring" of edges with probability p



Watts Strogatz Model

Interesting area: intermediate values for p: (shown: variant (2), similar in orig. model):



Watts Strogatz Model

• Variants: -(1)- rewire both "ends" of edges + allow self-edges +....

→ math.easier

-(2)- only add additional shortcut edges (no rewiring)

- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

2

- Variants: -(1)- rewire both "ends" of edges + allow self-edges +.... → math.easier
 - -(2)- only add additional shortcut edges (no rewiring)

B

- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

Watts Strogatz Model

- Variants: -(1)- rewire both "ends" of edges + allow self-edges +.... → math.easier
 - -(2)- only add additional shortcut edges (no rewiring)
- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

Watts Strogatz Model

- Variants: -(1)- rewire both "ends" of edges + allow self-edges +.... → math.easier
 - -(2)- only add additional shortcut edges (no rewiring)

- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

- Variants: -(1)- rewire both "ends" of edges + allow self-edges +.... → math.easier
 - -(2)- only add additional shortcut edges (no rewiring)
- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

- Variants: -(1)- rewire both "ends" of edges + allow self-edges +....

 → math.easier
 - -(2)- only add additional shortcut edges (no rewiring)
- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

