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D Studyina Complex Networks Studyina Complex Networks U
® Paradigm shift: small NW = large NW: ke ® Paradigm shift: small NW = large NW:
® interest in individual elements (“centrality of node x") > ® interest in individual elements (“centrality of node x”) >
interest in global statistical / topological properties (“degree interest in global statistical / topological properties (“degree
distribution of NW”) distribution of NW”)
® investigating particular NW instance = ® investigating particular NW instance 2>
general model for types of NW with certain properties general model for types of NW with certain properties
®100 nodes > 10% nodes | ®100 nodes > 10° nodes
® visualization possible = impossible / pointless ® visualization possible = impossible / pointless
® Typical sorts of NW investigated: ® Typical sorts of NW investigated:
social, information, technolegical, biolegical social, information, technological, biological
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Transitivity / Clustering Coefficient

Real World Networks: Properties
and Models Iy

Lecture will mostly follow [1], thus

corresponding citations are often omitted to

increase readability

Mean Average Path Length

Example:

3% mumber of tri s in the networ 3xl1
(1)— 3x number of tuangles.ln the llet\waLk _ —0.375
number of connected triples of vertices

&

C2 1 Z C:  with C number of triangles connected to vertex ¢
<) — o P —
n < ' number of triples centered on vertex i

CP=1/5(1+1+1/6+0+0)=13/30=0.433333

Mean Average Path Length

5
® “Small World Effect” I(m) “small” = I(n)e O(log(n))

® undirected g[%raph:

1
{=+——— 1;
in(n+1) ;( !

formula also counts 0 distances fromitoi: 2 n(n+1) =% n(n-1) +n

¢ Expression allowing for disconnected components (where d;== can
occur): harmonic mean:

1
671 - - l,_‘l
%n(n +1) Z(U

2]

5
® “Small World Effect”: Itn) “small” = Ifn)e O(log(y))

® undirected g%raph:

1
(":  EErEE— ]’l
in(n+1) i,z);( !

formula also counts 0 distances fromitoi: “2n(n+1) =% n(n-1) +n

¢ Expression allowing for disconnected components (where d;=» can
occur): harmonic mean:



Transitivity / Clustering Coefficient

Degree Distribution

® Clustering coefficient (whole graph):

C= - 3x number of triangles in the network
number of connected triples of vertices
6 x number of triangles in the network

number of paths of length two

p(FOAF)

° Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

C; =

_ [{egqy | Vie, v € Ny}
ki(k; -1)
2

Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
-' — (2): - 4-'1'
c=co- Ly

Degree Distribution

number of triples centered on vertex i

(see Introduction , k; = degree of node i)

mean of ratio instead of ratio of means

® Notation:

p(k) =

px = fraction of nodes having degree k

® Cumulative dlstrlbut|on

Z Prr. .

ki=k

¢ power law:

pi ~ k™7

> P~ Z Y

® exponential:

pic ~ €
> b=

M

k'=k

Z Pr ~ Z —k' & —~ E'_k"';x

k'=k k'=k

Degree Distribution

® Notation:

p(k) = px = fraction of nodes having degree k

® Cumulative distribution:

&

° power law:
pr~ k™

> PL ~ Z [ Sl Gt
kiek

® exponential:

Dk ~ E‘_k-""‘h"

k'=k k' =k

N P;\. = Z Pk ~ Z e_k",.-“p; ~e k

® Notation:
p(k) = px = fraction of nodes having degree Kk
® Cumulative distribution: N
oo
k'=k
¢ power law:
pr ~ k™

N -Pk — Z B a _~{0-~1)

® exponential:

Pk~ e
> b=

M

k'=k

o0
. N Ny .
Z P ~ Z o=k /K o o—k/n

k'=k k'=k



Degree Distribution

Degree Distribution

Cumulative distributions P, of example real world NW

10°

Cumulative distributions P, of example real world NW
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04 0 2 4 6 B 1 10
. 1 1 . . .
o~ — =5 ® power law: citation NW, WWW, Internet, metabolic NW,
o telephone call NW, human sexual contact NW etc.
0.15 01 01
01 . . .
00s ° Exponential: power grid, railwvay NW
’ o 2 4 6 8 10 0.01 0.01
® Power law with exp. cut-offs: Movie co-actor NW
Iy
Pk~ e—kl,.' K
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Maximum Degree

Maximum Degree

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:

'prob p of ,exactly m nodes with k and rest of nodes smaller than k*:

(in)p;\” ( — PA‘)H—m

*> prob of k being the highest degree in graph:

1
Z n
IN F) n—1n
e = (m) k)

m=1
= (pe+1=F)" — (1= F)"
> expected highest degree:

]‘ima.x = Zkkhk

Maximum Degree

® lessor %qual than one vertex with kmax
= NPy max = 1 = for power law py = k™% Kp,z — 1@
but: not very accurate estimation

® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

(M) (1 = Py

*> prob of k being the highest degree in graph:

n

mn
}.‘ — T _ 3 n—rimn
i 5—1 (m)Pk (1-F)

= (p+1=F)" — (1= F)"
® > expected highest degree:

J"max = ZL- khy

Maximum Degree

® lessor eq[ﬁal than one vertex with k.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:

'prob p of ,exactly m nodes with k and rest of nodes smaller than k*:

(in)p;\”(l P;‘.)”_”l

*> prob of k being the highest degree in graph:

1
Z n
IN F) n—1n
e = (m) k)

m=1

= (pe+1=F)" — (1= F)"
> expected highest degree:
]‘imax = ZI; khy,

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

Rl
® Other estimation:

'prob p of .exactly m nodes with k and rest of nodes smaller than k*:
(rn)p;\n (1 - Pﬁ-‘ ) e

*> prob of k being the highest degree in graph:

n

mn
}.‘ — T _ 3 n—rimn
U 5—1 (m)Pk (1 - Fg)

= (p+1=F)" — (1= F)"
® > expected highest degree:

J"ma..\' = ZL- khy,



Degree Distribution

Maximum Degree

® Notation:
p(k) = px = fraction of nodes having degree k

® Cumulative d|str|but|on

ZPA'

kf =k
® power law: .
pr ~ k™
-> Pf- ~ Z A’ “ ~ (a—1)
kt=k
¢ exponential:
‘ o kR
Dk 2] . .
> Pk = Z pk ~ Z C'_k /K —~ (’_k“‘”
k'=k fef =l

Maximum Degree

® lessor equal than one vertex with kmax
= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

ks
® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

(M) (1 = Py

*> prob of k being the highest degree in graph:

n

mn
}.‘ — T _ 3 n—rimn
i 5—1 (m)Pk (1-F)

= (p+1=F)" — (1= F)"
® > expected highest degree:

J"max = ZL- khy

Maximum Degree

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:

'prob p of ,exactly m nodes with k and rest of nodes smaller than k*:

(in)p;\”(l P;‘.)”_”l

*> prob of k being the highest degree in grqgh

1
Z n
IN F) n—1n
e = (m) k)

m=1

= (pe+1=F)" — (1= F)"
> expected highest degree:
]‘imax = ZI; khy,

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

(rn)p;\n ( 1-— Pﬁ.‘ ) n—1im

*> prob of k being the highest degree in graph:

n

mn )
hy, = Z (m)pzl(l = P )
m=1 ) %
= (p'(l + 1 _ PL‘)” _ (]. _ PI;)”

*> expected highest degree:
J"ma..\' = ZL- khy,



Maximum Degree

Maximum Degree

® since h, is small for small k and also for large k =
take as k.., the modal value of h, >

modal value : i B =0
dk

Using dP;/dk = pi we get

d 1ps. i
— = [ (”_A_Pk)(pﬁ.-i-l—PA)" (1= Py l]—

dk dk

Or kpax 1S a solution of
dpx 2
—= ~ —np;
dk P

(assuming: py is small for k > k., and that npr << 1 andthat P < 1)
ke

—we get for power law pj ~ k=% that L.~ pt/la=1)

Maximum Degree

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

(m)prr ( 1-— P}.‘ ) n—1m
*> prob of k being the highest degree in graph:
L n
}.‘ — Uy _ 3 =T
-5 (Dro-n
= (P +1-Fu)" = (1 - Fg)"
*> expected highest degree: s

J"max = ZL- khy

Maximum Degree

® since h, is small for small k and also for large k =
take as k.., the modal value of h, >

modal value : i B =0
dk

Using dP;/dk = pi we get

dk dk

Or Kpax 1S a solution of

d 1ps. i
— = [ (”_A_Pk)(pﬁ.-i-l—PA)" (1= Py l]—

Llp L

~ 2
Tl

(assuming: py is small for k > K., andthat2pr < 1 and ﬁ\at P <1

—we get for power law pg ~ k=% that J .~ pt/la=1)

® since h, is small for small k and also for large k =
take as k.., the modal value of h, 2

modal value : i h, =0
dk

Using dP;/dk = pi we get

d P _ n—1 n— l_
ghk [( T p;)(})n%l P)" " +pe(1-Fy) ]

O Kpax 1S a solution of
dpy.

~ T 2
ar — 'k

(assuming: py is small for k > k., and thatpr < 1 andthat Pp < 1)

—we get for power law pj ~ k= that f .~ pt/la=1)



Maximum Degree

Maximum Degree

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:
'prob p of ,exactly m nodes with k and rest of nodes smaller than k*:

(r)pi (1= Py
*> prob of k being the highest degree in graph:

T ]}
]“ — e _ X L—1
g E_l (m)Pk (1 —Pg)

= (pe+1=F)" — (1= F)"
® > expected highest degree:

]‘ima.x = Zkkhk

Network Resilience

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

()pg (L= Py
*> prob of k being the highest degree in graph:

= n ( —m
hy = Z (m)P?(l - P)"

m=1

=(pp+1-F)" —(1-F)"

i

*> expected highest degree:
J"max = ZL- khy

Network Resilience

® What happens if nodes are removed? (interesting e.g. for vaccination B
effects in disease spreading in human contact networks)

® For power law networks: -

remove random nodes : § 15 o |
no effect on mean distances 4 D
- r (o] 4
remove high degree nodes: %5 10 L ﬁ‘p-s-f"k} ]
drastic effect H o
3 el 1
b= F
2 5 4
[ . S [ i=a e =wEuuun smananEns ananeuan
Interpretations: o I |

Internet is easy to attack D0_00 | 0.01 0.02

. fraction of vertices removed  [1]
Internet is not easy to attack

® What happens if nodes are removed? (interesting e.g. for vaccination
effects in disease spreading in human contact networks)

® For power law networks: o
remove random nodes : 8 45 | o

no effect on mean distances 2 O
© r 1
remove high degree nodes: g L |

: 5 10 e
drastic effect T rese
é I }\ci-“"ﬂd ]
g 5 [ i
® . . @ ['EEEE ESENSSESSSNSSSNENEENENSEEEE}
Interpretations: . o I ]
| 0 . | . |
Internet is easy to attack 0.00 0.01 0.02

. fraction of vertices removed  [1]
Internet is not easy to attack



Network Resilience Mixing Patterns

® What happens if nodes are removed? (interesting e.g. for vaccination

hd Ecological NW, Internet, some social NW:
effects in disease spreading in human contact networks)

Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes
of same class OR

Disassortative Mixing (Heterophily): Nodes attach to nodes of different
classes (almost n-partite behavior)

® For power law networks: ]
. o ‘.;;V
S - o & Food Web: Plants €= Herbivores €= Carnivores
remove high degree nodes: 8 10 L o ] but few Plants €= Plants etc.
drastic effect : o Internet: Backbones provider €= ISP €-» end user
g g | ’ but few ISP € ISP etc.
[ ] . . © [/ ERm = EEEE NS SR SRS NSNS SRR RARE)
Interpretations: o I | ° Assortativity:
| ) 1 . 1 L i
Internet is easy to attack Do_oo 0.01 0.02 Social NW
. fraction of vertices removed  [1]
Internet is not easy to attack
Mixing Patterns Mixing Patterns
wornen
® Ecological NW, Internet, some social NW: black  hispanic  white  other
Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes E = black 506 32 69 26
of same class OR £ | hispanic 23 308 114 38
Disassortative Mixing (Heterophily): Nodes attach to nodes of different = white 26 46 509 68
classes (almost n-partite behavior) other 10 14 A7 39

TABLE III Couples in the study of Catania et al. [85] tabu- [1]

®: R
Diassortativity: lated by race of either partner. After Morris [302].

Food Web: Plants €- Herbivores €<-= Carnivores
but few Plants €= Plants etc.

Internet: Backbones provider €= ISP €= end user ° . ) . . E
but few ISP €= ISP etc. measure mixing: analogous to modularity: mixing matrix e = m
® Assortativity: > P(J:m = eij/ X €5 Zp‘j =1 Z P(li)=1
Social NW N !

&



Mixing Patterns

Mixing Patterns

I women
black  hispanic white other
E = black 506 32 69 26
g hispanic 23 308 114 38
= white 26 46 500 68
other 10 14 47 32

TABLE IIT Couples in the study of Catania ef al. [85] tabu-  [1]
lated by race of either partner. After Morris [302].

wormen
black hispanic white other
E — black 506 32 69 26
g hispanic 23 308 114 38
- white 26 46 & 599 68
other 10 14 47 32
kg

TABLE IIT Couples in the study of Catania et al. [85] tabu-  [1]
lated by race of either partner. After Morris [302].

E E
® measure mixing: analogous to modularity: mixing matrix e = ﬁ ® measure mixing: analogous to modularity: mixing matrix e = m
-2 P(J|I) = Eij_f Z_j’efj' Z €5 = L, ZP(JP) =1 -> P(_]|I) = eij_/ Z_j‘e?'j' Zp-ij =1, Z P(Jll] =1
ij J i i
Mixing Patterns Mixing Patterns __vomen
black hispanic white other
women — black 506 32 69 206
E - g | hispanic 23 308 114 38
black hispanic white other g white 26 46 500 68
th 10 14 47 32
E = black 506 32 69 26 o
. . ar g ‘ TABLE III Couples in the study of Catania et al. [85] tabu-
E hlSpi\l]lC 23 308 114 38 lated by race u[lli)ilhei'l purmcrl'l. .-‘\fll.-r Mu;rlis [302]. "
= white 26 46 599 68 5 : o Assortativit
other 10 14 A7 39 irst measure for Assortativity:

TABLE IIT Couples in the study of Catania ef al. [85] tabu-  [1]
lated by race of either partner. After Morris [302].

E
® measure mixing: analogous to modularity: mixing matrix e = ——

IE|
> P(jli) = e/ Sei D=L Y PUli)=1
| : 4
ke

EDINLUDES!
C==F_1

issues: Asymmetry of E - two values;
Not respecting size of classes

® > second measure for Assortativity: (cmp. Modularity)

L _Tre—|e’| g
T 1-e?]



Mixing Patterns __women
black  hispanic  white  other
E = black | 506 32 60 26
- g | hispanie 23 308 114 38
8 white 26 46 500 68
ather 10 14 47 32

TABLE IIT Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

® > first measure for Assortativity:

_ YL P(ifi) -1
O==F1

issues: Asymmetry of E = two values;
Not respecting size of classes

ks
® > second measure for Assortativity: (cmp. Modularity)
Tre — || e?|
r=———-—
1—|e?|
Mixing Patterns —_vmn

blac Hspanic white other
—_— black 506 32 GO 26
E - g | hispanie 23 308 114 38
g white 26 16 590 68
other 10 14 47 32

TABLE IIT Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

® > first measure for Assortativity:

_ YL P(ifi) -1
O==F1

issues: Asymmetry of E = two values;
Not respecting size of classes

® > second measure for Assorativity: (cmp. Modularity)
. Tre — || e?|
1 e?]|

Mixing Patterns

womern
black hispanic white other
E — black 506 32 69 26
- g hispanic 23 308 114 38
E white 26 16 500 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al [85] tabu-

lated by race of either partner. After Morris [302].

® > first measure for Assortativity: k
B
. > Plili) -1
Q= N -1

issues: Asymmetry of E = two values;
Not respecting size of classes

® > second measure for Assortativity: (cmp. Modularity)
Tre—| e?|
r= _
1—[[e?]
Mixing Patterns —

hlae lspanic white other
— black 506 32 69 26
E - g hispanic 23 308 114 38
E white 26 16 500 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al [85] tabu-

lated by race of either partner. After Morris [302].

® > first measure for Assortativity: k

XL P -1
Q= N -1

issues: Asymmetry of E = two values;
Not respecting size of classes

® > second measure for Assortativity: (cmp. Modularity)

T_Tre—|e2|
T o1—|e?|



Mixing Patterns __women
black hispanic white other
E —_— black 506 32 69 26
- g | hispanie 23 308 114 38
e white 26 46 500 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

® > first measure for Assortativity:

YL PGl -1
@= N-1

issues: Asymmetry of E = two values;
Not respecting size of classes

Mixing Patterns

® Special example: ,class” of nodes determined by degree

- nodes attached to nodes with same or different degree?
Both variants occur in real world NW

¢ Degree correlation measures:

1)  mean degree of neighbors of node with degree k:
-> if assortative mixing: curve should be increasing
- Internet: curve decreases = diassortativity

2) Pearson correlation for node degrees k_i and k_j of
adjacent nodes i and j

® P .
- second measure for Assortativity: (cmp. Modularity)
. 2
Tre—| e*|
T 1 [e2]
BHS O0F- BHS O3:-
START EINFUGEN ENTWURF Anmir START EINFUGEN ENTWURF Anmy»
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Beginnan  Folie vorfiihren = Bildschirmprisent M Beginnan  Folie vorfiihren - Bildschirmprasent] M
Bildschirmprasentation starten - Bildschirmprasentation starten ~
Mixi Mix
25 z 25 3
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network type n m z [ o | o c? v | Ref(s)
film actors undirected 440013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected T673 55302 14.44 4.60 - 0.59 0.88 0.276 105, 323
math coauthorship undirected 251330 496480 392 757 - 0.15 0.34 0.120 107, 182
physics coauthorship undirected 52000 245 300 0.27 6.19 - | 0.45 0.56 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11203064 1558 4.02 - | 0.088 [ 0.60 0127 | 311, 313

8 | telephone call graph | undirected | 47000000 £0000000 3.16 21 80
email messages directed 50012 86300 144 495 [ 15720 0.16 136
email address books directed 16881 57020 3.8 5.22 - | 07 0.13 0.092 | 321
student relstionships undirected 573 477 1.66 16.01 - 0.005 0.001 —0.020 45
sexual contacts undirected 2810 265, 266

= | WWW nd.edu directed 269504 1497135 555 | 11.27 0.11 0.29 —0.067 | 14,34

2 | WWW Altavista directed 203540046 | 2130000000 1046 | 1618 7

g | citation network directed 783330 6716198 | 827 a1

‘-E Roget’s Thesaurus directed 1022 5103 4.9 4.87 - | 013 01537 | 244

- word co-occurrence undirected 460002 17000000 70.13 27 119, 157
Internet undirected 10697 31902 508 .31 25 0.035 -0.130 86, 148

g | power grid undirected 4041 6504 2,67 | 1800 - | 0.10 —0.003 | 416

"gn train routes undirected 5ET 19603 66.70 216 - —0.033 | 366

_g' software packages directed 1439 1723 1.20 242 | 16/14 | 0.070 —0.016 | 218

'§ software classes directed 1377 2211 1.61 1.51 - | 0.033 —0.110 | 305

= | electronic circuits undirected 24007 53248 434 | 1108 30 | 0.010 -0154 | 155
peer-to-peer network | undirected 880 1206 147 4.28 21 | 0.012 —0.366 | 6, 354
metabolic network undirected 765 3686 0.64 256 22 | 0.090 —0.240 | 214

E protein interactions undirected 2115 2240 212 6.80 24 [ 0.072 —0.156 | 212

E marine food weh directed 135 508 443 2,05 - 0.16 -0.263 204

% freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed M 23590 .68 397 -] 018 0.28 —0.226 | 416, 421

3LE II Basic statistics for a number of published networks. The properties messured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout
onents sre given for directed graphs); clustering coefficent C'}) from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient r, Seq
last column gives the citation{s) for the network in the bibliography. Blank entries indicate unavailable data.
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® Is NW well clustered? - see Parts on Clustering
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® Is NW well clustered? - see Parts on Clustering
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Random Graph Models: Poisson Graph

® Is NW well clustered? - see Parts on Clustering

2 s O White
example: < ® Black
friendship NW o ® Our
in US school: 4 &-

Random Graph Models: Poisson Graph

(1]

® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

® p,: probability that a node has degree k:

PE = (Z)p"'(l —p)h el f,

for n & « and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs” &

)
B
|
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® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

¢ py: probability that a node has degree k:

) k. —z
PE = (:,)pk(l —p)th e ” f,

for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs”
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® G, : space of graphs with n nodes and %
each of the %2 n(n-1) edges appears with probability p

® pi: probability that a node has degree k:
. ko—z
( zhe

L k n—k .~
(})ra-prr ==

k
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® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

s
¢ py: probability that a node has degree k:
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pr = (},’,)p“(l —p) e

for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
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Random Graph Models: Poisson Graph

® Given: prgperty Q (,is connected®, ,has diameter xyz* etc.) of G, ;-
-Gn,p has property Q with high probability“: P(Q|n,p) 2 1 iff n =2 =

(adaptated from [2] (which, in turn, is adaptated from [3]))

Ik

® In such models G, phase transitions exist for properties Q:
~threshold function” q(n) (with q(n) = « if n = =) so that:

0 if lim,s,.p(n)/q(n)=0
lim,s., P(Qn,p) = s
Mn> (@In.p) 1 if limys. p(n)/g(n) =«

(adaptated from [3])

Random Graph Models: Poisson Graph

® Given: property Q (,is connected®, ,has diameter xyz“ etc.) of G, :
.Gnp has property Q with high probability“: P(Q|n,p) 2 1 iff n =«

(adaptated from [2] (which, in turn, is adaptated from [3]))

® In such models G, p phase transitions exist for properties Q:
.threshold function” q(n) (with q(n) = « if n = «) so that:
0 if lim,s,p(n)/q(n)=0
lim,s.,, P(Q|n,p) = o It
z @in.p) 1 if limys.p(n)/q(n) =«

(adaptated from [3])

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

¢ probability for a given node i (with assumed degree k) to be not in X

== probability that none of its neighbors is in X
== uk

oQ

N % . = (zu)”
u:Zpku =e Z 0=

k=0 k=0
ks

® > u (k fixed) == uk

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e"?°

Example: giant component / connectedness of G, ,
i
® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

® probability for a given node i (with assumed degree k) to be notin X

== probability that none of its neighbors is in X
== uk

o0

o ("u)’"
S = Z!)kuk — e * Z «A' _ e:(u.—l)

k=0 k=0

® > u (k fixed) == uk

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e?°
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® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

® p,: probability that a node has degree k:

’ k. —z
pr = (}’,)p*'(l —p) e

for n & « and holding the mean degree of a node z=§(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs”

Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not i[gl X

® probability for a given node i (with assumed degree k) to be notin X

== probability that none of its neighbors is in X
== uk

- = ("u)’"
® >ukfixed)==uk > y= Z*”'f-“k — o—? Z U7 a1
k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >
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Random Graph Models: Poisson Graph

*S=1—e*°

o . 1 ® G, : space of graphs with n nodes and
mean size <s> of smaller rest components (no proof): (s) = 1--%-5 each of the % n(n-1) edges appears with probability p
10 ——— ® p,: probability that a node has degree k: \
i ‘ =1 n z ‘sz
| k n—=k
| .= — ~
s sE 'f ‘ 4 . P (A)p (1 f’) -
M r | l\ 1 o
20 [\ 7 ] @
g 6 L ! ‘gl - g for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
g 0 [\ —os & (Poisson approximation of Binomial distribution)
g 4 A i 3 - ,Poisson random graphs®
§ gy - : ;‘:“ \ | .g’
0: L | 0
0 1 2 3 f 5 s
mean degree = 1
-> if the av degree z is larger than 1 (== if p ~ (1+€)/n): X exists [1]
Random Graph Models: Poisson Graph Random Graph Models: Poisson Graph
° S — 1 - eig)5 m i : : .
1 Very coarse (!!!) estimation of diameter / of G, :
® mean size <s> of smaller rest components (no proof): (s) = —
1—2z+425 ® average degree of nodes: z
- in a distance of d from a node i should be
10— 1 L approximately z¢ many nodes
; "I =1 > ifzd=n:d=/
58 [ \l 1 . > I ~lognl/logz ~ logn (if z is kept constant)
! r [ 1 Q
2 r [ N
Tl LS 7 < ® For a more exact derivation of the result see references in [1]
2 | I"‘\ — 05 i’-*- ° . - :
E 4 [ ) | g We see: it is not difficult (in terms of how large must
= i [ E connectivity be) to acheive small diameters
g 2 i— ‘_‘.‘; L i ]
0 ; t - | | 0
0 1 2 3 4 5
mean degree = 1
-> if the av degree z is larger than 1 (== if p ~ (1+€)/n): X exists [1]
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Random Graph Models: Poisson Graph

Unfortunately: small / is the only property in congruence with real world NW:

® Clustering coefficient C(" of Gpp :

® Since C is probability of transitivity and edges are “drawn”
independently = C(M=p = 0O(1/n) (if z is fixed, as usual)

®cCis usually much larger for real world NW:

Iy
Film 3.65 2.99 0.79 0.00027
collaboration
Power Grid 18.7 124 0.08 0.005
C.elegans 2.65 2.25 0.28 0.05

[4]

° Degree distribution is Poisson and not power law
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® Clustering coefficient C(" of Ghp :

® Since C(" [i%s probability of transitivity and edges are “drawn”
independently & CM=p =0O(1/n) (if z is fixed, as usual)

®cCis usually much larger for real world NW:
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collaboration
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¢ Degree distribution is Poisson and not power law



Random Graph Models: Poisson Graph Random Graph Models: Poisson Graph

Unfortunately: small / is the only property in congruence with real world NW: ® Furthermore PRG -

hd Clustering coefficient C(V of Gnp : k ® has random mixing patterns,

® Since C is probability of transitivity and edges are “drawn” ® is not navigatable with local search,
independently = C(M=p = 0O(1/n) (if z is fixed, as usual) o
has no community structure

®cCis usually much larger for real world NW:

Film 3.65 2.99 0.79 0.00027
collaboration
Power Grid ~ 18.7 12.4 0.08 0.005
C.elegans 2.65 2.25 0.28 0.05
[4]
o i
Degree distribution is Poisson and not power law

Random Graph Models: More Refined Models Random Graph Models: Poisson Graph

® Instead of having connection probability p as in Poisson G, ,:

Very coarse (!!!) estimation of diameter / of G, :
demand certain degree distributions p, (e.g. power law)

® average degreelof nodes: z

® > results are promising but still not in congruence with real world NW = in a distance of d from a node i should be
approximately z¢ many nodes
e od — - —
® > still many difficult open problems > ifzf=n:d=/ L
N - [ ~logn/logz ~ logn (if z is kept constant)

® For a more exact derivation of the result see references in [1]

® We see: it is not difficult (in terms of how large must
connectivity be) to acheive small diameters



Random Graph Models: More Refined Models

Watts Strogatz Model

® Instead of having connection probability p as in Poisson G, ,:
demand certain degree distributions p, (e.g. power law) I

® > results are promising but still not in congruence with real world NW

® > still many difficult open problems

Watts Strogatz Model

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

*L nod[gs in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges = L k
® ~rewiring“ of edges with probability p

before rewiring

after rewiring

(1]
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® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges = L k
® ~rewiring“ of edges with probability p

before rewiring
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Watts Strogatz Model

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges = L k
® .rewiring” of edges with probability p

before rewiring

after rewiring

(1]

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph:
(for D=1:)

e p=0: regular lattice:
®C=C=(3k3)/(4k-2) >% forkdw
®=L/4k forkeoo

- clustering coeff. ,ok"

- no small world effect

¢ p=1: similar to a random graph:
®Cc~2k/L for L>«
® = for L

- clustering coeff too small

log L /log k - small world effect.

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k
—> total number of edges = L k
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(for D=1:)

° p=0: regular lattice:
® C=Ci=(3k3)/(4k2) >% fork>=
®1=L/4k  forL>=

- clustering coeff. ,ok"

- no small world effect

¢ p=1: similar to a random graph:

®c~2k/L for LD«
®/=logl/logk forl<w

- clustering coeff too small

- small world effect.

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph:
(for D=1:)

¢ p=0: regular lattice:
®C=C=(3k3)/(4k2) > % forke
®I=L/4k  forL>=

- clustering coeff. ,ok"

- no sﬁgnall world effect

® p=1: similar to a random graph:
®c~2k/L for L=
®/=1logL/logk forlL>=

—> clustering coeff too small

- small world effect.

Watts Strogatz Model

® Interesting area: intermediate values for p: (shown: variant (2), similar in orig. model):

1 —— aa P

i

—— mean vertex-vertex distance \\ 1
-—-- clustering coefficient A

or C/C_
max

max
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) I

0.001
rewiring probability p
(]

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models
[

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k
—> total number of edges = L k
_° Lrewiring“ of edges with probability p

before rewiring

after rewiring
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® Interesting area: intermediate values for p: (shown: variant (2), similar in orig. model):
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® Great problem of random graphs: high clustering coeff. / transitivity does not

occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regula% D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges =L k
_® Lrewiring” of edges with probability p

before rewiring

after rewiring
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- math.easier
-(2)- only add additional shortcut edges

® For (2):
® mean total number of shortcuts = L k p
7' mean degree of each node = 2k(1+p)

i

Variants: -(1)- rewire both ,ends” of edges + allow self-edges +....

(no rewiring)
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