Script generated by TTT

Title: profile1 (18.07.2013)

Date: Thu Jul 18 11:18:37 CEST 2013

Duration: 92:32 min

Pages: 81

ation: Strategic Form Games

• Set \mathcal{I} of players: {1,2,,I} Example: {1,2}			M	R
• Player index: $i \in \mathcal{G}$		L	IVI	K
Pure Strategy Space S _i of player i	U	4,3	5,1	6,2
Example: $S_1 = \{U, M, D\}$ and $S_2 = \{L, M, R\}$ Stragegy profile $S = (S_1,, S_l)$ where	M	2,1	8,4	3,6
each $s_i \in S_i$ Example: (D,M)	D	3,0	9,6	2,8

- (Finite) space $S = X_i S_i$ of strategy profiles $s \in S$ Example: $S = \{ (U,L), (U,M),..., (D,R) \}$
- Payoff function u_i : S→ \mathbb{R} gives von Neumann-Morgenstern-utility u_i (s) for player i of strategy profile $s \in S$ Examples: $u_1((U,L))=4$, $u_2((U,L))=3$, $u_1((M,M))=8$
- Set of player i's opponents: "-i" Example: -1={2}

GameTheonyRasics nnty - PowerPoint

BILDSCHIRMPRÄSENTATION

? 🖅 – 🗆

• Set § of players: {1.2.....|} Example: {1,2} R M Player index: $i \in \mathcal{G}$ 4,3 U 5,1 6,2 Pure Strategy Space S; of player i Example: $S_1 = \{U, M, D\}$ and $S_2 = \{L, M, R\}$ M 2,1 8,4 3,6 Stragegy profile s=(s₁,...s_i) where each $s_i \in S_i$ Example: (D,M) D 3,0 9,6 2,8

- (Finite) space $S = X_i S_i$ of strategy profiles $s \in S$ Example: $S = \{ (U,L), (U,M),..., (D,R) \}$
- Payoff function $u_i : S \rightarrow \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$ Examples: $u_1((U,L))=4$, $u_2((U,L))=3$, $u_1((M,M))=8$
- Set of player i's opponents: "-i" Example: -1={2}

) · (5 to =

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_{.i} ∈ S_{.i}: "other player's strategies"
- Short notation: (s'_i,s_{-i}):=(s₁,...,s_{i-1},s'_i,s_{i+1},...,s_i)
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i, s_{\cdot i}) > u_i(s_i, s_{\cdot i})$ for all $s_{\cdot i} \in S_{-i}$
- ... weakly dominated:
- $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})
- If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_i, \sigma_{-i})$ is a convex function of $u_i(\sigma'_i, s_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$,

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_{-i} ∈ S_{-i}: "other player's strategies"
- Short notation: $(s'_{i}, s_{-i}) := (s_{1}, ..., s_{i-1}, s'_{i}, s_{i+1}, ..., s_{i})$
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i,s_{-i})>u_i(s_i,s_{-i})$ for all $s_{-i}\in S_{-i}$
- ... weakly dominated:
- $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})
- If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because
- $u_i(\sigma'_i, \sigma_{i})$ is a convex function of $u_i(\sigma'_i, s_{-i}), u_i(\sigma'_i, s'_{-i}), u_i(\sigma'_i, s''_{-i}),...$

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_{-i} ∈ S_{-i}: "other player's strategies"
- Short notation: $(s'_{i}, s_{-i}) := (s_{1}, ..., s_{i-1}, s'_{i}, s_{i+1}, ..., s_{i})$
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in \widehat{S}_{-i}$
- ... weakly dominated:

 $u_i(\sigma'_i, s_{i,i}) \ge u_i(s_i, s_{i,i})$ for all $s_{i,i} \in S_{i,i}$ (and > for at least one $s_{i,i}$)

If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_i, \sigma_{-i})$ is a convex function of $u_i(\sigma'_i, \sigma_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$,

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_{-i} ∈ S_{-i}: "other player's strategies"
- Short notation: $(s'_{i}, s_{-i}) := (s_{1}, ..., s_{i-1}, s'_{i}, s_{i+1}, ..., s_{i})$
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_{\otimes} s_{-i})$ for all $s_{-i} \in S_{-i}$
- ... weakly dominated: $u_i(\sigma_i',s_{-i}) \geq u_i(s_i,s_{-i}) \ \ \text{for all } s_{-i} \in S_{-i} \ \ (\text{and } > \text{for at least one } s_{-i})$
- If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_{i \circ \circ} \sigma_{\circ \circ})$ is a convex function of $u_i(\sigma'_{i \circ \circ} \sigma_{\circ \circ})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s''_{-i})$,....

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_{-i} ∈ S_{-i}: "other player's strategies"
- Short notation: (s'_i, s_i):=(s₁,..., s_{i-1}, s'_i, s_{i+1},...,s_i)
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_{i} s_{-i})$ for all $s_{-i} \in S_{-i}$
- ... weakly dominated:

 $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})

If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})^{\circ}$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_{ii}, \sigma_{-i})$ is a convex function of $u_i(\sigma'_i, s_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$,

Games in Strategic Form & Nash Equilibrium

More Notation:

Discussing player i's strategy-options, holding other player's options

fixed:

• $s_{-i} \in S_{-i}$: "Strictly Convex function:

• Short no f(tx+(1-t)y) < tf(x) + (1-t)f(y)

Same for

Definition:

• Pure st u_i(σ'_i ,s_{-i}) :

u_i(σ'_i ,s_{-i}) >
... weak

 $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})

• If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_i, \sigma_{-i})$ is a convex function of $u_i(\sigma'_i, s_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$,

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_i ∈ S_i: "other player's strategies"
- Short notation: $(s'_{i}, s_{-i}) := (s_{1}, ..., s_{i-1}, s'_{i}, s_{i+1}, ..., s_{i})$
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$
- ... weakly dominated:

 $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})

If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_i, \sigma_{-i})$ is a convex function of $u_i(\sigma'_i, s_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s'_{-i})$,

Games in Strategic Form & Nash Equilibrium

More Notation:

Discussing player i's strategy-options, holding other player's options

• s_{-i} ∈ S_{-i}: "

fixed:

S_{.i}: " Strictly Convex function:

• Short no f(tx+(1-t)y) < tf(x) + (1-t)f(y)

Same for

Definition:

Pure sti $u_i(\sigma'_i, s_{-i})$ A

k

 $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})

If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_{in}, \sigma_{in})$ is a convex function of $u_i(\sigma'_{in}, s_{-i})$, $u_i(\sigma'_i, s'_{-i})$, $u_i(\sigma'_i, s''_{-i})$,....

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_{-i} ∈ S_{-i}: ,

Strictly Convex function:

- Short no f(tx+(1-t)y) < tf(x) + (1-t)f(y)
- Same for

Definition:

- Pure stu $u_i(\sigma'_i, s_i)$:
- ... weak

 $u_i(\sigma'_i, s_{ii}) \ge u_i(s_i, s_{ii})$ for all $s_i \in S_{ii}$ (and > for at least one s_{ii})

- If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because
- $u_i(\sigma'_{i}, \sigma_{-i})$ is a convex function of $u_i(\sigma'_i, s_{-i}), u_i(\sigma'_i, s'_{-i}), u_i(\sigma'_i, s''_{-i}),...$

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- \bullet s_{-i} \in S_{-i}: "other player's strategies"
- Short notation: (s'_i, s_{-i}):=(s₁,...,s_{i-1}, s'_i, s_{i+1},...,s_l)
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$
- ... weakly dominated:

 $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})

- If $u_i(\sigma'_i,s_{-i}) > u_i(s_i,s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i,\sigma_{-i}) > u_i(s_i,\sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because
- $u_i(\sigma'_{i}, \sigma_{i})$ is a convex function of $u_i(\sigma'_i, s_{-i}), u_i(\sigma'_i, s'_{-i}), u_i(\sigma'_i, s''_{-i}), \dots$

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i's strategy-options, holding other player's options fixed:
- s_{-i} ∈ S_{-i}: "other player's strategies"
- Short notation: $(s'_{i}, s_{-i}) := (s_{1}, ..., s_{i-1}, s'_{i}, s_{i+1}, ..., s_{i})$
- Same for mixed strategies: $(\sigma'_i, \sigma_{-i}) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_i)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_{i_{\!\!\!2}}, s_{-i})$ for all $s_{-i} \in S_{-i}$
- ... weakly dominated:

 $u_i(\sigma'_i, s_{-i}) \ge u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ (and > for at least one s_{-i})

If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ we also have $u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$ for all $\sigma_{-i} \in S_{-i}$ because $u_i(\sigma'_{ii}, \sigma_{(i)}, \sigma_{(i)})$ is a convex function of $u_i(\sigma'_i, s_{-i}), u_i(\sigma'_i, s'_{-i}), u_i(\sigma'_i, s'_{-i}), \dots$

Games in Strategic Form & Nash Equilibrium

- What about dominated mixed strategies?
- Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
- But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

Example:

- U and M are not dominated by D for player 1
- But: Playing $\sigma_1 = (\frac{1}{2}, \frac{1}{2}, 0)$ gives expected utility $u_1(\sigma_1, *) = -\frac{1}{2}$ no matter what 2 plays \rightarrow D $(\sigma_D = (0, 0, 1))$ dominates σ_1

	L	R
U	1, 3	-2, 0
М	-2, 0	1ढ़3
D	0, 1	0, 1

- What about dominated mixed strategies?
- Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
- But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

R

Example:

- U and M are not dominated by D for player 1
- But: Playing $\sigma_1 = (\frac{1}{2}, \frac{1}{2}, 0)$ gives expected utility $u_1(\sigma_1, *) = -\frac{1}{2}$ no matter what 2 plays \rightarrow D $(\sigma_D = (0, 0, 1))$ dominates σ_1

	L	R
U	1, 3	-2, 0
М	-2, 0	1, 3
D	0, 1	0, 1

D.

Games in Strategic Form & Nash Equilibrium

A note on rationality

U 8, 10 -100, 9
D 7, 6 6, 5

- Iterated strict dominance \rightarrow (U,L)
- BUT: psychology → play D instead of U because "U is unsafe"

- What about dominated mixed strategies?
- Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
- But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

Example:

- U and M are not dominated by D for player 1
- But: Playing $\sigma_1 = (\frac{1}{2}, \frac{1}{2}, 0)$ gives expected utility $u_1(\sigma_1, *) = -\frac{1}{2}$ no matter what 2 plays \rightarrow D $(\sigma_D = (0, 0, 1))$ dominates σ_1

	L	R
U	1, 3	-2, 0
Ŋ	-2, 0	1, 3
D	0, 1	0, 1

Games in Strategic Form & Nash Equilibrium

A note on rationality

	L	R
U	ጺ, 10	-100, 9
D	7, 6	6, 5

- Iterated strict dominance \rightarrow (U,L)
- BUT: psychology → play D instead of U because "U is unsafe"

A note on rationality

	L	R
U	8, 10	-100, 9
D	7, 6	6, 5

- Iterated strict dominance → (U,L)
- BUT: psychology → play D instead of U because "U is unsafe"

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- Good's valuations: v_i ; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{i \neq i} s_i$
 - let $r_i := \max_{i \neq i} s_i$ r_i is the price having to be paid
 - winner i 's utility: $u_i = v_i r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case s_i > v_i : (overbidding)
 - If $r_i > s_i$: looses $\rightarrow u_i = 0$ \rightarrow could have bidden v_i as well
 - If $r_i \le v_i$: wins $\rightarrow u_i = v_i r_i$

Games in Strategic Form & Nash Equilibrium

Game Theory ← → Decision Theory

- Example
- Iterated strict dominance → (U.L)

	L	R
U	1, 3	4, 1
D	0, 2	3, 4

- If player 1 reduces his payon for U by 2:
 - decison theory: no use
 - game theory: new iterated strict dominance \rightarrow (D,R)

7	V	7

	L	R
U	-1, 3	2, 1
D	0, 2	3, 4

V

(1) (b) (d) (e) (e) (e)

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- Good's valuations: v_i ; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{i \neq i} s_i$
 - let $r_i := \max_{i \neq i} s_i$ r_i is the price having to be paid
 - winner i 's utility: $u_i = v_i r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - \bullet case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $\rightarrow u_i = 0$
 - \rightarrow could have bidden v_i as well

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{i \neq i} s_i$
 - let $r_i := \max_{i \neq i} s_i$ r_i is the price having to be paid
 - winner i 's utility: $u_i = v_i r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $\rightarrow u_i = 0$
 - → could have bidden v_i as well
 - If $r_i \le v_i$: wins $\rightarrow u_i = v_i r_i$
 - → could have bidden v_i as well

v_i s_i r_i ▶

 v_i r_i s_i

 r_i s_i v_i (r_i)

 $s_i r_i v_i$

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- case $v_i < r_i < s_i$:
 - i wins \rightarrow $u_i = v_i r_i < 0$ (winner's curse) \rightarrow should have bidden $v_i = r_i \rightarrow u_i = 0$ at least
- case s_i < v_i: (underbidding)
 - If $r_i \le s_i$ or $r_i \ge v_i$:
 - u_i is unchanged if he bids v_i instead of s_i
 - If $s_i < r_i < v_i$:
 bidder forgoes positive
 winning chances by underbidding

Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{i \neq i} s_i$
 - let $r_i := \max_{i \neq i} s_i$ r_i is the price having to be paid
 - winner i 's utility: $u_i = v_i r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - \bullet case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $\rightarrow u_i = 0$

→ could have bidden v_i as well

→ could have bidden v; as well

 r_i s_i v_i (r_i)

 $s_i r_i v_i$

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- case $v_i < r_i < s_i$:
 - i wins \rightarrow $u_i = v_i r_i < 0$ (winner's curse)
 - \rightarrow should have bidden $v_i = r_i \rightarrow u_i = 0$ at least
- case s_i < v_i : (underbidding)
 - If $r_i \le s_i$ or $r_i \ge v_i$:
 - u_i is unchanged if he bids v_i instead of s_i
 - If $s_i < r_i < v_i$:
 - bidder forgoes positive winning chances by underbidding
- Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player

Vickrey Auction & Iterated dominance

 v_i r_i s_i case v: < r: < s: :

R

 r_i s_i v_i (r_i)

 $s_i r_i v_i$

- - i wins \rightarrow u_i = v_i r_i < 0 (winner's curse) \rightarrow should have bidden $v_i = r_i \rightarrow u_i = 0$ at least
- case s_i < v_i: (underbidding)
 - If $r_i \leq s_i$ or $r_i \geq v_i$: u; is unchanged if he bids vinstead of si
 - If $s_i < r_i < v_i$: bidder forgoes positive winning chances by underbidding
- Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player's strategy is optimal response to all other player's strategies:
- Mixed strategy profile σ^* is Nash Equilibrium if for all i: $u_i(\sigma^{\downarrow}_{i}, \sigma^{*}_{i}) \ge u_i(S_i, \sigma^{*}_{i})$ for all $S_i \in S_i$ (Pure strategy profiles also possible → "pure strategy NE")
- Strategy profile s* is Strict Nash Equilibrium: if it is a NE and for all i: $u_i(S^*_{i}, S^*_{-i}) > u_i(S_i, S^*_{-i})$ for all $S_i \neq S_i^*$. Strict NE is necessarily a pure strategy NE by definition.

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- case $v_i < r_i < s_i$:
 - i wins \rightarrow $u_i = v_i r_i < 0$ (winner's curse) \rightarrow should have bidden $v_i = r_i \rightarrow u_i = 0$ at least

 v_i r_i s_i

 r_i s_i v_i (r_i)

- case s_i < v_i: (underbidding)
 - If $r_i \leq s_i$ or $r_i \geq v_i$: u; is unchanged if he bids vinstead of si
 - If $s_i < r_i < v_i$: s_i r_{i Vi} bidder forgoes positive winning chances by underbidding
- Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player's strategy is optimal response to all other player's strategies:
- Mixed strategy profile σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$

(Pure strategy profiles also possible → "pure strategy NE")

- Strategy profile s* is Strict Nash Equilibrium: if it is a NE and for all i: $u_i(S^*_{i}, S^*_{-i}) > u_i(S_i, S^*_{-i})$ for all $s_i \neq s_i^*$.
- Strict NE is necessarily a pure strategy NE by definition.

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player's strategy is optimal response to all other player's strategies:
- Mixed strategy profile σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(S_i, \sigma^*_{-i})$ for all $s_i \in S_i$ (Pure strategy profiles also possible \rightarrow "pure strategy NE")
- Strategy profile s^* is Strict Nash Equilibrium: if it is a NE and for all i: $u_i(S^*_{i_i}, S^*_{-i_i}) > u_i(S_i, S^*_{-i_i})$ for all $s_i \neq s_i^*$.

 Strict NE is necessarily a pure strategy NE by definition.

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player's strategy is optimal response to all other player's strategies:
- Mixed strategy profile σ^* is Nash Equilibrium if for all i: $u_i(\vec{\sigma^*}_i, \sigma^*_{-i}) \ge u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$ (Pure strategy profiles also possible \rightarrow "pure strategy NE")
- Strategy profile s^* is Strict Nash Equilibrium: if it is a NE and for all i: $u_i(S^*_{i_i}, S^*_{-i_i}) > u_i(S_i, S^*_{-i_i})$ for all $s_i \neq s_i^*$. Strict NE is necessarily a pure strategy NE by definition.

R

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player's strategy is optimal response to all other player's strategies:
- Mixed strategy profile σ^* is Nash Equilibrium if

for all i:
$$u_i(\sigma^*_i, \sigma^*_{-i}) \nearrow u_i(S_i, \sigma^*_{-i})$$
 for all $s_i \in S_i$

(Pure strategy profiles also possible → "pure strategy NE")

• Strategy profile s* is Strict Nash Equilibrium: if it is a NE and

for all i:
$$u_i(\textbf{S}^{\star}_{i},~\textbf{S}^{\star}_{-i}~)>u_i(\textbf{S}_{i},~\textbf{S}^{\star}_{-i}~)~$$
 for all $\textbf{s}_i\neq \textbf{s}_i^{\star}~$.

Strict NE is necessarily a pure strategy NE by definition.

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player's strategy is optimal response to all other player's strategies:
- Mixed strategy profile σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_i, \overset{\circ}{O}^*_{-i}) \ge u_i(S_i, \sigma^*_{-i})$ for all $s_i \in S_i$

(Pure strategy profiles also possible \rightarrow "pure strategy NE")

• Strategy profile s* is Strict Nash Equilibrium: if it is a NE and

for all i: $u_i(S^*_i, S^*_{-i}) > u_i(S_i, S^*_{-i})$ for all $S_i \neq S_i^*$.

Strict NE is necessarily a pure strategy NE by definition.

Nash Equilibrium

- From previous slide: σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_{i,i}, \sigma^*_{-i}) \ge u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$
- Expected utilities are "linear in the probabilities"
 - → in NE def we must only check for pure alternatives s_i
 - → In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- From previous slide: σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$
- Expected utilities are "linear in the probabilities"
 - → in NE def we must only check for pure alternatives s_i
 - → In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)

Nash Equilibrium

- From previous slide: σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_i, \sigma^*_i) \ge u_i(s_i, \sigma^*_i)$ for all $s_i \in S_i$
- Expected utilities are "linear in the probabilities"
 - → in NE def we must only check for pure alternatives s_i
 - → In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)

B

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Cournot model: Duopoly. Each of two firms (players) i produces same good.
- Output levels q; are chosen from sets Q;
- Cost of production is c_i(q_i)
- Market price is $p(q) = p(q_1+q_2)$
- Firm i's profit is then $u_i(q_1, q_2) = q_i p(q) c_i(q_i)$
- Cournot reaction functions $r_1: Q_2 \rightarrow Q_1$ and $r_2: Q_1 \rightarrow Q_2$ specify optimal reaction on output level of opponent

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Strict equilibria need not exist. However each finite strategy form game has a mixed strategy equilibrium.
- In NE no player has incentive to deviate from NE
- In reality: If rationality is "non-strict" (mistakes are made): deviations can occur
- If one round of elimination of strictly dominated strategies yields unique strategy profile, this strategy profile is a strict NE (unique)
- In NE positive probabilities may only be assigned to not-strictly dominated strategies (Otherwise profit may be increased by choosing a dominating strategy).

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Cournot model: Duopoly. Each of two firms (players) i produces same good.
- Output levels qiare chosen from sets Qi
- Cost of production is $c_i(q_i)$
- Market price is $p(q) = p(q_1+q_2)$
- Firm i's profit is then $u_i(q_1, q_2) = q_i p(q) c_i(q_i)$
- Cournot reaction functions $r_1: Q_2 \rightarrow Q_1$ and $r_2: Q_1 \rightarrow Q_2$ specify optimal reaction on output level of opponent

Nash Equilibrium: Example: Cournot Competition

- Cournot model: Duopoly. Each of two firms (players) i produces same good.
- Output levels q are chosen from sets Q
- Cost of production is $c_i(q_i)$
- Market price is $p(q) = p(q_1+q_2)$
- Firm i's profit is then $u_i(q_1, q_2) = q_i p(q) c_i(q_i)$
- Cournot reaction functions $r_1: Q_2 \rightarrow Q_1$ and $r_2: Q_1 \rightarrow Q_2$ specify optimal reaction on output level of opponent

Nash Equilibrium: Example: Cournot Competition

- Cournot model: Duopoly. Each of two firms (players) i produces same good.
- Output levels q are chosen from sets Q
- Cost of production is $c_i(q_i)$
- Market price is $p(q) = p(q_1+q_2)$
- Firm i's profit is then $u_i(q_1, q_2) = q_i p(q) c_i(q_i)$
- Cournot reaction functions $r_1: Q_2 \rightarrow Q_1$ and $r_2: Q_1 \rightarrow Q_2$ specify optimal reaction on output level of opponent

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Cournot model: Duopoly. Each of two firms (players) i produces same good.
- Output levels qi are chosen from sets Qi
- Cost of production is c_i(q_i)
- Market price is $p(q) = p(q_1+q_2)$
- Firm i's profit is then $u_i(q_1, q_2) = q_i p(q) c_i(q_i)$
- Cournot reaction functions $r_1: Q_2 \rightarrow Q_1$ and $r_2: Q_1 \rightarrow Q_2$ specify optimal reaction on output level of opponent

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2) \text{ by solving } d/dq_2 \ u_2(q_1, q_2) = 0 \text{ which yields}$ $d/dq_2 \ [q_2 \ p(q_1, q_2) c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) \ q_2 c_2'(q_2) = 0.$ Inserting $r_2(q_1)$ for q_2 $p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) \ r_2(q_1) c_2'(r_2(q_1)) = 0$ gives the defining equation for $r_2(.)$. (analogous for $r_1(.)$).
- $^{\bullet}$ The intersections of the functions r_2 and r_1 are the NE of the Cournot game.
- Example: Linear demand p(q) = max(0, 1-q); linear cost: $c_i(q_i) = c q_i$:

$$\rightarrow$$
 r₂ (q₁) =1/2 (1- q₁ -c); r₁ (q₂) =1/2 (1- q₂ -c);

$$\rightarrow$$
 NE: $q_2^* = r_2 (q_1^*) = 1/3 (1-c) = q_1^* = r_1 (q_2^*)$

Nash Equilibrium: Example: Cournot Competition

Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving d/dq_2 $u_2(q_1, q_2) = 0$ which yields

$$d/dq_2 [q_2 p(q_1,q_2) - c_2(q_2)] = p(q_1,q_2) + p'(q_1,q_2) q_2 - c_2'(q_2) = 0.$$

Inserting r_2 (q_1) for q_2

$$p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0$$

gives the defining equation for r_2 (.).

(analogous for r_1 (.)).

- ullet The intersections of the functions r_2 and r_1 are the NE of the Cournot game.
- Example: Linear demand p(q) = max(0, 1-q); linear cost: $c_i(q_i) = c_iq_i$:

$$\rightarrow$$
 r₂ (q₁) =1/2 (1- q₁ -c); r₁ (q₂) =1/2 (1- q₂ -c);

$$\rightarrow$$
 NE: $q_2^* = r_2 (q_1^*) = 1/3 (1-c) = q_1^* = r_1 (q_2^*)$

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

• Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving d/dq_2 $u_2(q_1, q_2) = 0$ which yields

$$d/dq_2 [q_2 p(q_1,q_2) - c_2(q_2)] = p(q_1,q_2) + p'(q_1,q_2) q_2 - c_2'(q_2) = 0.$$

Inserting r₂ (q₁) for q₂

$$p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0$$

gives the defining equation for r_2 (.).

(analogous for $r_1(.)$).

- The intersections of the functions r_2 and r_1 are the NE of the Cournot game.
- Example: Linear demand p(q) = max(0, 1-q); linear cost: $c_i(q_i) = c_iq_i$:

$$\rightarrow$$
 r₂ (q₁) =1/2 (1- q₁ -c); r₁ (q₂) =1/2 (1- q₂ -c);

$$\rightarrow$$
 NE: $q_2^* = r_2 (q_1^*) = 1/3 (1-c) = q_1^* = r_1 (q_2^*)$

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving d/dq_2 $u_2(q_1, q_2) = 0$ which yields

$$d/dq_2 [q_2 p(q_1,q_2) - c_2(q_2)] = p(q_1,q_2) + p'(q_1,q_2) q_2 - c_2'(q_2) = 0.$$

Inserting r₂ (q₁) for q₂

$$p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0$$

gives the defining equation for r_2 (.).

(analogous for r_1 (.)).

r b

- ullet The intersections of the functions r_2 and r_1 are the NE of the Cournot game.
- Example: Linear demand p(q) = max(0, 1-q); linear cost: $c_i(q_i) = c q_i$:

$$\rightarrow$$
 r₂ (q₁) =1/2 (1- q₁ -c); r₁ (q₂) =1/2 (1- q₂ -c);

$$\rightarrow$$
 NE: $q_2^* = r_2 (q_1^*) = 1/3 (1-c) = q_1^* = r_1 (q_2^*)$

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

• Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving d/dq_2 $u_2(q_1, q_2) = 0$ which yields

$$d/dq_2 \ [q_2 \ p(q_1,q_2) \ - \ c_2(q_2)] = p(q_1,q_2) \ + \ p'(q_1,q_2) \ q_2 \ - \ c_2'(q_2) = 0.$$

Inserting r_2 (q_1) for q_2

$$p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0$$

gives the defining equation for r_2 (.).

(analogous for r_1 (.)).

- The intersections of the functions r_2 and r_1 are the NE of the Cournot game.
- Example: Linear demand p(q) = max(0, 1-q); linear cost: c_i(q_i) = c q_i:

$$\rightarrow$$
 r₂ (q₁) =1/2 (1- q₁ -c); r₁ (q₂) =1/2 (1- q₂ -c);

$$\rightarrow$$
 NE: $q_2^* = r_2 (q_1^*) = 1/3 (1-c) = q_1^* = r_1 (q_2^*)$

Nash Equilibrium: Example: Cournot Competition

Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving d/dq_2 $u_2(q_1, q_2) = 0$ which yields

$$d/dq_2 [q_2 p(q_1,q_2) - c_2(q_2)] = p(q_1,q_2) + p'(q_1,q_2) q_2 - c_2'(q_2) = 0.$$

Inserting r₂ (q₁) for q₂

$$p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0$$

gives the defining equation for r_2 (.).

(analogous for r₁ (.)).

- The intersections of the functions r_2 and r_1 are the NE of the Cournot game.
- Example: Linear demand p(q) = max(0, 1-q); linear cost: $c_i(q_i) = c_iq_i$:

$$\rightarrow$$
 r₂ (q₁) =1/2 (1- q₁ -c); r₁ (q₂) =1/2 (1- q₂ -c);

$$\rightarrow$$
 NE: $q_2^* = r_2 (q_1^*) = 1/3 (1-c) = q_3^* = r_1 (q_2^*)$

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence-of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
- Example: Matching pennies:
- Both players simultaneously announce Head or Tails: IF match \rightarrow 1 wins; If differ \rightarrow 2 wins
- No pure NE; but mixed strategy NE: ((1/2, 1/2); (1/2, 1/2)):

Н

1, -1

-1, 1₹

Т

-1.1

1, -1

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence-of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
- Example: Matching pennies:
- Both players simultaneously announce
 Head or Tails: IF match → 1 wins; If differ → 2 wins
- No pure NE;

but mixed strategy NE: ((1/2, 1/2); (1/2, 1/2)):

Reasoning: If player 2 plays (1/2, 1/2) then player 1's expected payoff is $\frac{1}{2} *1 + \frac{1}{2} *(-1) = 0$ when playing H and $\frac{1}{2} *(-1) + \frac{1}{2} *1 = 0$ when playing T \Rightarrow player 1 is also indifferent

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- Another example: Inspection game
- Worker: work or shirk; Employer: Inspect or not inspect
- Worker: working costs g produces value v; gets wage w
- Employer: Inspection costs h
- We assume w > g > h > 0
- If not inspect → worker shirks → better inspect → if inspect → worker always works
 → better not inspect → ...: No pure NE
- → Employer must randomize

[•] Reasoning: If player 2 plays (1/2, 1/2) then player 1's expected payoff is $\frac{1}{2}$ *1 + $\frac{1}{2}$ *(-1) = 0 when playing H and $\frac{1}{2}$ *(-1) + $\frac{1}{2}$ *1 = 0 when playing T \Rightarrow player 1 is also indifferent

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- Another example: Inspection game
- Worker: work or shirk; Employer: Inspect or not inspect
- Worker: working costs g, produces value v; gets wage w
- Employer: Inspection costs h
- We assume w > g > h > 0
- If not inspect → worker shirks → better
 inspect → if inspect → worker always works
 → better not inspect → ...: No pure NE
- ◆ Employer must randomize

	l	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- Another example: Inspection game
- Worker: work or shirk; Employer: Inspect or not inspect
- Worker: working costs g, produces value v; gets wage w
- Employer: Inspection costs h
- We assume w > g > h > 0
- If not inspect → worker shirks → better
 inspect → if inspect → worker always works
 → better not inspect → ...: No pure NE
- ◆ Employer must randomize

	ı	NÏ
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- Another example: Inspection game
- Worker: work or shirk; Employer: Inspect or not inspect
- Worker: working costs g, produces value v; gets wage w
- Employer: Inspection costs h
- We assume w > g > h > 0
- If not inspect → worker shirks → better inspect → if inspect → worker always works → better not inspect → ...: No pure NE
- → Employer must randomize

	ı	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Dr.

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays (x, 1-x) and employer plays (y, 1-y)
- Indifference condition in mixed strategy NE →
 - → For worker indifferent between S and W: gain from shirking == expected income loss:

$$0y+(1-y)w=y(w-g)+(1-y)(w-g)$$

$$\rightarrow$$
 g = yw \rightarrow y=g/w

→ For employer indifferent between I and NI: inspection costs == expctd. wage savings:

$$x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)$$

$$\rightarrow$$
h = xw \rightarrow x= h/w

R		I	NI
	S	0,-h	w,-w
	W	w-g, v-w-h	w-g, v-w

• Indifference condition in mixed strategy NE →

→ For worker indifferent between S and W: gain from shirking == expected income loss:

$$0y+(1-y)w=y(w-g)+(1-y)(w-g)$$

 \rightarrow g = yw \rightarrow y=g/w

→ For employer indifferent between I and NI: inspection costs == expctd. wage savings:

$$x(-h)+(1-x)(v-w-h) = x(-w) + (1-x)(v-w)$$

$$\rightarrow$$
h = xw \rightarrow x= h/w

	I	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays (x, 1-x) and employer plays (y, 1-y)
- Indifference condition in mixed strategy NE →
 - → For worker indifferent between S and W : gain from shirking == expected income loss:

$$0y+(1-y)w=y(w-g)+(1-y)(w-g)$$

$$\rightarrow$$
 g = yw \rightarrow y=g/w

For employer indifferent between I and NI: inspection costs == expctd. wage savings:

$$x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)$$

$$\rightarrow$$
h = xw \rightarrow x= h/w

	I	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays (x, 1-x) and employer plays (y, 1-y)
- Indifference condition in mixed strategy NE →
 - → For worker indifferent between S and W : gain from shirking == expected income loss:

$$\rightarrow$$
 g = yw \rightarrow y=g/w

→ For employer indifferent between I and NI: inspection costs == expctd. wage savings:

$$x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)$$

$$\rightarrow$$
h = xw \rightarrow x= h/w

	I	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays (x, 1-x) and employer plays (y, 1-y)
- Indifference condition in mixed strategy NE →
 - → For worker indifferent between S and W : gain from shirking == expected income loss:

$$0y+(1-y)w=y(w-g)+(1-y)(w-g)$$

$$\rightarrow$$
 g = vw \rightarrow v=g/w

→ For employer indifferent between I and NI: inspection costs == expctd. wage savings:

$$x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)$$

$$\rightarrow$$
h = xw \rightarrow x= h/w

	_	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays (x, 1-x) and employer plays (y, 1-y)
- Indifference condition in mixed strategy NE →
 - → For worker indifferent between S and W : gain from shirking == expected income loss:

$$0y+(1-y)w=y(w-g)+(1-y)(w g)$$

 \rightarrow g = yw \rightarrow y=g/w

→ For employer indifferent between I and NI: inspection costs == expctd, wage savings:

x(-h)+(1-x)(v-w-h)	= x (-w) + (1-x)	(v-w)
7		

			R.			
→h	=	xw	\rightarrow	x=	h/w	

	1	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

(1) (b) (C) (E) (Q) (...)

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays (x, 1-x) and employer plays (y, 1-y)
- Indifference condition in mixed strategy NE →
 - → For worker indifferent between S and W: gain from shirking == expected income loss:

$$0y+(1-y)w=y(w-g)+(1-y)(w-g)$$

De la

$$\rightarrow$$
 g = yw \rightarrow y=g/w

→ For employer indifferent between I and NI: inspection costs == expctd. wage savings:

$$x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)$$

$$\rightarrow$$
h = xw \rightarrow x= h/w

	I	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays (x, 1-x) and employer plays (y, 1-y)
- Indifference condition in mixed strategy NE →
 - → For worker indifferent between S and W: gain from shirking == expected income loss:

$$0y+(1-y)w=y(w-g)+(1-y)(w-g)$$

$$\rightarrow$$
 g = yw \rightarrow y=g/w

→ For employer indifferent between I and NI: inspection costs == expctd. wage savings:

$$x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)$$

$$\rightarrow$$
h = xw \rightarrow x= h/w

	I	NI
S	0,-h	w,-w
W	w-g, v-w-h	w-g, v-w

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Man & Woman; Ballet or Football

	В	F
F	0, 0	2, 1
В	1, 2	0, 0

- Another example: Game of chicken
- Driver 1 & Driver 2; Tough or Weak

	T	W
Т	-1,-1	2, 1
W	1, 2	0, 0

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Man & Woman; Ballet or Football

	В	F
F	0, 0	2,1
В	1, 2	0, 0

- Another example: Battle of the sexes
- Man & Woman: Ballet or Football

	В	F
F	0, 0	2, 1
В	1, 2	0, 0

- Another example: Game of chicken
- Driver 1 & Driver 2; Tough or Weak

	T	W
Т	-1,-1	2, 1
W	1, 2	0, 0

- Another example: Game of chicken
- Driver 1 & Driver 2; Tough or Weak

	T	W
Т	-1,-1	2, 1
W	1, 2	0, 0

В

0,0

1, 2 "

F

F

2, 1

0, 0

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Two pure NE: (F;F) and (B;B)
- One mixed NE: Indifference condition
- \rightarrow Let $\sigma_1(F)=x$ and $\sigma_2(B)=y$

Player 1's indifference:

 $0 y + 2(1-y) = 1 y + 0 (1-y) \rightarrow y=2/3$

Player 2's indifference:

 $0 \times + 2(1-x) = 1 \times + 0 (1-x) \rightarrow x=2/3$

→ Mixed NE: ((2/3, 1/3); (2/3, 1/3))

- Another example: Game of chicken
- (same reasoning) ->

Mixed NE: ((1/2, 1/2); (1/2, 1/2))

	В	F
F	0,0	2, 1
В	1, 2 🖔	0, 0

	T	W
Т	-1,-1	2, 1
W	1, 2	0, 0

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Two pure NE: (F;F) and (B;B)
- One mixed NE: Indifference condition \rightarrow Let $\sigma_1(F)=x$ and $\sigma_2(B)=y$

Player 1's indifference:

 $0 y + 2(1-y)^{1/2} = 1 y + 0 (1-y) \rightarrow y=2/3$

Player 2's indifference:

 $0 \times + 2(1-x) = 1 \times + 0 (1-x) \rightarrow x=2/3$

- → Mixed NE: ((2/3, 1/3); (2/3, 1/3))
- Another example: Game of chicken
- (same reasoning) \rightarrow

Mixed NE:	((1/2,	1/2);	(1/2,	1/2)
-----------	--------	-------	-------	------

	Т	W
T	-1,-1	2, 1
W	1, 2	0, 0

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Two pure NE: (F;F) and (B;B)
- One mixed NE: Indifference condition
- \rightarrow Let $\sigma_1(F)=x$ and $\sigma_2(B)=y$

Player 1's indifference:

$$0 y + 2(1-y) = 1 y + 0 (1-y) \Rightarrow y=2/3$$

Player 2's indifference:

$$0 \times + 2(1-x) = 1 \times + 0 (1-x) \rightarrow x=2/3$$

→ Mixed NE: ((2/3, 1/3); (2/3, 1/3))

- Another example: Game of chicken
- (same reasoning) →

Mixed NE: ((1/2, 1/2); (1/2, 1/2))

	В	F
F	0, 0	2, 1
В	1, 2	0, 0

	Т	W
Т	-1,-1	2, 1
W	1, 2	0, 0

R

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Two pure NE: (F;F) and (B;B)
- One mixed NE: Indifference condition \rightarrow Let $\sigma_1(F)=x$ and $\sigma_2(B)=y$

Player 1's indifference:

$$0 y + 2(1-y) = 1 y + 0 (1-y) \Rightarrow y=2/3$$

Player 2's indifference:

$$0 \times + 2(1-x) = 1 \times + 0 (1-x) \rightarrow x=2/3$$

 \rightarrow Mixed NE: ((2/3, 1/3); (2/3, 1/3))

- Another example: Game of chicken
- (same reasoning) →

Mixed NE: ((1/2, 1/2); (1/2, 1/2))

	В	F	
F	0, 0	2, 1	
В	1, 2	0, 0	

\(\frac{1}{2}\)		W	
Т	-1,-1	2, 1	
W	1, 2	0, 0	

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Two pure NE: (F;F) and (B;B)
- One mixed NE: Indifference condition
- \rightarrow Let $\sigma_1(F)=x$ and $\sigma_2(B)=y$

Player 1's indifference:

$$0 y + 2(1-y) = 1 y + 0 (1-y) \rightarrow y=2/3$$

Player 2's indifference:

$$0 x + 2(1-x) = 1 x + 0 (1-x) \rightarrow x=2/3$$

→ Mixed NE: ((2/3, 1/3); (2/3, 1/3))

- Another example: Game of chicken
- (same reasoning) →

Mixed NE: ((1/2, 1/2); (1/2, 1/2))

Lig /	Т	w	
Т	-1,-1	2, 1	L ₃
W	1, 2	0, 0	

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of "focalness" of NE ("focal points"):

Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

R

Risk Dominance

dominates" (C;C)

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant \rightarrow (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C \rightarrow p(C)⁸>0.5 \rightarrow p(C)>0.93 \rightarrow (D;D) "risk
- Hunt Stag (C) Hunt Stag (C) O, 1

 Hunt Stag (C) 1, 0 1, 1

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of "focalness" of NE ("focal points"): Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is paretodominant \rightarrow (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C \rightarrow p(C)⁸>0.5 \rightarrow p(C)>0.93 \rightarrow (D;D) "risk dominates" (C;C)

	Hunt Stag (C)	Hunt Hare (D)
Hunt Stag (C)	2,2	0,1
Hunt Hare (D)	1,0	1,1

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of "focalness" of NE ("focal points"): Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is paretodominant \rightarrow (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C \rightarrow p(C)⁸>0.5 \rightarrow p(C)>0.93 \rightarrow (D;D) "risk dominates" (C;C)

	Hunt Stag (C)	Hunt Hare (D)
Hunt Stag (C)	2,2	0,1
Hunt Hare (D)	1,0	1,1

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of "focalness" of NE ("focal points"): Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant \rightarrow (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C \rightarrow p(C)⁸>0.5 \rightarrow p(C)>0.93 \rightarrow (D;D) "risk dominates" (C;C)

	Hunt Stag (C)	Hunt Hare (D)
Hunt Stag (C)	2,2	0,1
Hunt Hare (D)	1,0	1,1

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of "focalness" of NE ("focal points"): Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant \rightarrow (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C \rightarrow p(C)⁸>0.5 \rightarrow p(C)>0.93 \rightarrow (D;D) "risk dominates" (C:C)

	Hunt Stag (C)	Hunt Hare (D)
Hunt Stag (C)	2,2	0,1
Hunt Hare (D)	1,0	1,1

Nash Equilibrium: More than one NE Risk Dominance / Pareto Optimality

	L	R	
U	0,0,10	-5,-5,0	
D	-5,-5,0	1,1,-5	
A			

	L	R	
U	-2,-2,0	-5,-5,0	
D	-5,-5,0	-1,-1,5	
В			

[•] Three player game: Two pure NE: (U,L,A) and (D,R,B); (and one mixed); (U,L,A) pareto-dominates (D,R,B)

^{• →} concept of "coalition proof eq." (here (D,R,B))(see [1])

Games in Strategic Form & Nash Equilibrium

Mixed Nash Equilibrium: General Analysis for 2 x 2 Games
(see [2])

Pure NE: One cell →
For A: cell's payoff for A must be (weak)
maximum over rows in that column
For B: cell's payoff for B must be (weak)
maximum over column in that row

			L	К	
p Player A 1-p	р	U	a _{UL} , b _{UL}	a _{UR} , b _{UR}	
	1-p	D	a _{DL} , b _{DL}	a _{DR} , b _{DR}	

Player B

If player 3's choice is fixed \rightarrow Two player game \rightarrow (D,R) is pareto-dominant \rightarrow if players \updownarrow and 2 expect A : coordinate on (D,R).

[•] Example: (U,R) is pure NE if $a_{UR} \ge a_{DR}$ and $b_{UR} \ge b_{III}$